HRNet (CVPR'2019) ```bibtex @inproceedings{sun2019deep, title={Deep high-resolution representation learning for human pose estimation}, author={Sun, Ke and Xiao, Bin and Liu, Dong and Wang, Jingdong}, booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition}, pages={5693--5703}, year={2019} } ```
AP-10K (NeurIPS'2021) ```bibtex @misc{yu2021ap10k, title={AP-10K: A Benchmark for Animal Pose Estimation in the Wild}, author={Hang Yu and Yufei Xu and Jing Zhang and Wei Zhao and Ziyu Guan and Dacheng Tao}, year={2021}, eprint={2108.12617}, archivePrefix={arXiv}, primaryClass={cs.CV} } ```
Results on AP-10K validation set | Arch | Input Size | AP | AP50 | AP75 | APM | APL | ckpt | log | | :----------------------------------------- | :--------: | :---: | :-------------: | :-------------: | :------------: | :------------: | :-----------------------------------------: | :----------------------------------------: | | [pose_hrnet_w32](/configs/animal_2d_keypoint/topdown_heatmap/ap10k/td-hm_hrnet-w32_8xb64-210e_ap10k-256x256.py) | 256x256 | 0.722 | 0.935 | 0.789 | 0.557 | 0.729 | [ckpt](https://download.openmmlab.com/mmpose/animal/hrnet/hrnet_w32_ap10k_256x256-18aac840_20211029.pth) | [log](https://download.openmmlab.com/mmpose/animal/hrnet/hrnet_w32_ap10k_256x256-18aac840_20211029.log.json) | | [pose_hrnet_w48](/configs/animal_2d_keypoint/topdown_heatmap/ap10k/td-hm_hrnet-w48_8xb64-210e_ap10k-256x256.py) | 256x256 | 0.728 | 0.936 | 0.802 | 0.577 | 0.735 | [ckpt](https://download.openmmlab.com/mmpose/animal/hrnet/hrnet_w48_ap10k_256x256-d95ab412_20211029.pth) | [log](https://download.openmmlab.com/mmpose/animal/hrnet/hrnet_w48_ap10k_256x256-d95ab412_20211029.log.json) |