123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239 |
- # Copyright (c) OpenMMLab. All rights reserved.
- import argparse
- import copy
- import os
- import os.path as osp
- from mmengine.config import Config, DictAction
- from mmengine.dist import get_dist_info
- from mmengine.evaluator import DumpResults
- from mmengine.fileio import dump
- from mmengine.runner import Runner
- from mmdet.engine.hooks.utils import trigger_visualization_hook
- from mmdet.registry import RUNNERS
- from tools.analysis_tools.robustness_eval import get_results
- def parse_args():
- parser = argparse.ArgumentParser(description='MMDet test detector')
- parser.add_argument('config', help='test config file path')
- parser.add_argument('checkpoint', help='checkpoint file')
- parser.add_argument(
- '--out',
- type=str,
- help='dump predictions to a pickle file for offline evaluation')
- parser.add_argument(
- '--corruptions',
- type=str,
- nargs='+',
- default='benchmark',
- choices=[
- 'all', 'benchmark', 'noise', 'blur', 'weather', 'digital',
- 'holdout', 'None', 'gaussian_noise', 'shot_noise', 'impulse_noise',
- 'defocus_blur', 'glass_blur', 'motion_blur', 'zoom_blur', 'snow',
- 'frost', 'fog', 'brightness', 'contrast', 'elastic_transform',
- 'pixelate', 'jpeg_compression', 'speckle_noise', 'gaussian_blur',
- 'spatter', 'saturate'
- ],
- help='corruptions')
- parser.add_argument(
- '--work-dir',
- help='the directory to save the file containing evaluation metrics')
- parser.add_argument(
- '--severities',
- type=int,
- nargs='+',
- default=[0, 1, 2, 3, 4, 5],
- help='corruption severity levels')
- parser.add_argument(
- '--summaries',
- type=bool,
- default=False,
- help='Print summaries for every corruption and severity')
- parser.add_argument('--show', action='store_true', help='show results')
- parser.add_argument(
- '--show-dir', help='directory where painted images will be saved')
- parser.add_argument(
- '--wait-time', type=float, default=2, help='the interval of show (s)')
- parser.add_argument('--seed', type=int, default=None, help='random seed')
- parser.add_argument(
- '--launcher',
- choices=['none', 'pytorch', 'slurm', 'mpi'],
- default='none',
- help='job launcher')
- parser.add_argument('--local_rank', type=int, default=0)
- parser.add_argument(
- '--final-prints',
- type=str,
- nargs='+',
- choices=['P', 'mPC', 'rPC'],
- default='mPC',
- help='corruption benchmark metric to print at the end')
- parser.add_argument(
- '--final-prints-aggregate',
- type=str,
- choices=['all', 'benchmark'],
- default='benchmark',
- help='aggregate all results or only those for benchmark corruptions')
- parser.add_argument(
- '--cfg-options',
- nargs='+',
- action=DictAction,
- help='override some settings in the used config, the key-value pair '
- 'in xxx=yyy format will be merged into config file. If the value to '
- 'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
- 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
- 'Note that the quotation marks are necessary and that no white space '
- 'is allowed.')
- args = parser.parse_args()
- if 'LOCAL_RANK' not in os.environ:
- os.environ['LOCAL_RANK'] = str(args.local_rank)
- return args
- def main():
- args = parse_args()
- assert args.out or args.show or args.show_dir, \
- ('Please specify at least one operation (save or show the results) '
- 'with the argument "--out", "--show" or "show-dir"')
- # load config
- cfg = Config.fromfile(args.config)
- cfg.launcher = args.launcher
- if args.cfg_options is not None:
- cfg.merge_from_dict(args.cfg_options)
- # work_dir is determined in this priority: CLI > segment in file > filename
- if args.work_dir is not None:
- # update configs according to CLI args if args.work_dir is not None
- cfg.work_dir = args.work_dir
- elif cfg.get('work_dir', None) is None:
- # use config filename as default work_dir if cfg.work_dir is None
- cfg.work_dir = osp.join('./work_dirs',
- osp.splitext(osp.basename(args.config))[0])
- cfg.model.backbone.init_cfg.type = None
- cfg.test_dataloader.dataset.test_mode = True
- cfg.load_from = args.checkpoint
- if args.show or args.show_dir:
- cfg = trigger_visualization_hook(cfg, args)
- # build the runner from config
- if 'runner_type' not in cfg:
- # build the default runner
- runner = Runner.from_cfg(cfg)
- else:
- # build customized runner from the registry
- # if 'runner_type' is set in the cfg
- runner = RUNNERS.build(cfg)
- # add `DumpResults` dummy metric
- if args.out is not None:
- assert args.out.endswith(('.pkl', '.pickle')), \
- 'The dump file must be a pkl file.'
- runner.test_evaluator.metrics.append(
- DumpResults(out_file_path=args.out))
- if 'all' in args.corruptions:
- corruptions = [
- 'gaussian_noise', 'shot_noise', 'impulse_noise', 'defocus_blur',
- 'glass_blur', 'motion_blur', 'zoom_blur', 'snow', 'frost', 'fog',
- 'brightness', 'contrast', 'elastic_transform', 'pixelate',
- 'jpeg_compression', 'speckle_noise', 'gaussian_blur', 'spatter',
- 'saturate'
- ]
- elif 'benchmark' in args.corruptions:
- corruptions = [
- 'gaussian_noise', 'shot_noise', 'impulse_noise', 'defocus_blur',
- 'glass_blur', 'motion_blur', 'zoom_blur', 'snow', 'frost', 'fog',
- 'brightness', 'contrast', 'elastic_transform', 'pixelate',
- 'jpeg_compression'
- ]
- elif 'noise' in args.corruptions:
- corruptions = ['gaussian_noise', 'shot_noise', 'impulse_noise']
- elif 'blur' in args.corruptions:
- corruptions = [
- 'defocus_blur', 'glass_blur', 'motion_blur', 'zoom_blur'
- ]
- elif 'weather' in args.corruptions:
- corruptions = ['snow', 'frost', 'fog', 'brightness']
- elif 'digital' in args.corruptions:
- corruptions = [
- 'contrast', 'elastic_transform', 'pixelate', 'jpeg_compression'
- ]
- elif 'holdout' in args.corruptions:
- corruptions = ['speckle_noise', 'gaussian_blur', 'spatter', 'saturate']
- elif 'None' in args.corruptions:
- corruptions = ['None']
- args.severities = [0]
- else:
- corruptions = args.corruptions
- aggregated_results = {}
- for corr_i, corruption in enumerate(corruptions):
- aggregated_results[corruption] = {}
- for sev_i, corruption_severity in enumerate(args.severities):
- # evaluate severity 0 (= no corruption) only once
- if corr_i > 0 and corruption_severity == 0:
- aggregated_results[corruption][0] = \
- aggregated_results[corruptions[0]][0]
- continue
- test_loader_cfg = copy.deepcopy(cfg.test_dataloader)
- # assign corruption and severity
- if corruption_severity > 0:
- corruption_trans = dict(
- type='Corrupt',
- corruption=corruption,
- severity=corruption_severity)
- # TODO: hard coded "1", we assume that the first step is
- # loading images, which needs to be fixed in the future
- test_loader_cfg.dataset.pipeline.insert(1, corruption_trans)
- test_loader = runner.build_dataloader(test_loader_cfg)
- runner.test_loop.dataloader = test_loader
- # set random seeds
- if args.seed is not None:
- runner.set_randomness(args.seed)
- # print info
- print(f'\nTesting {corruption} at severity {corruption_severity}')
- eval_results = runner.test()
- if args.out:
- eval_results_filename = (
- osp.splitext(args.out)[0] + '_results' +
- osp.splitext(args.out)[1])
- aggregated_results[corruption][
- corruption_severity] = eval_results
- dump(aggregated_results, eval_results_filename)
- rank, _ = get_dist_info()
- if rank == 0:
- eval_results_filename = (
- osp.splitext(args.out)[0] + '_results' + osp.splitext(args.out)[1])
- # print final results
- print('\nAggregated results:')
- prints = args.final_prints
- aggregate = args.final_prints_aggregate
- if cfg.dataset_type == 'VOCDataset':
- get_results(
- eval_results_filename,
- dataset='voc',
- prints=prints,
- aggregate=aggregate)
- else:
- get_results(
- eval_results_filename,
- dataset='coco',
- prints=prints,
- aggregate=aggregate)
- if __name__ == '__main__':
- main()
|