1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889 |
- # Copyright (c) OpenMMLab. All rights reserved.
- import argparse
- import os.path as osp
- from mmengine.config import Config, DictAction
- from mmengine.registry import init_default_scope
- from mmengine.utils import ProgressBar
- from mmdet.models.utils import mask2ndarray
- from mmdet.registry import DATASETS, VISUALIZERS
- from mmdet.structures.bbox import BaseBoxes
- def parse_args():
- parser = argparse.ArgumentParser(description='Browse a dataset')
- parser.add_argument('config', help='train config file path')
- parser.add_argument(
- '--output-dir',
- default=None,
- type=str,
- help='If there is no display interface, you can save it')
- parser.add_argument('--not-show', default=False, action='store_true')
- parser.add_argument(
- '--show-interval',
- type=float,
- default=2,
- help='the interval of show (s)')
- parser.add_argument(
- '--cfg-options',
- nargs='+',
- action=DictAction,
- help='override some settings in the used config, the key-value pair '
- 'in xxx=yyy format will be merged into config file. If the value to '
- 'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
- 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
- 'Note that the quotation marks are necessary and that no white space '
- 'is allowed.')
- args = parser.parse_args()
- return args
- def main():
- args = parse_args()
- cfg = Config.fromfile(args.config)
- if args.cfg_options is not None:
- cfg.merge_from_dict(args.cfg_options)
- # register all modules in mmdet into the registries
- init_default_scope(cfg.get('default_scope', 'mmdet'))
- dataset = DATASETS.build(cfg.train_dataloader.dataset)
- visualizer = VISUALIZERS.build(cfg.visualizer)
- visualizer.dataset_meta = dataset.metainfo
- progress_bar = ProgressBar(len(dataset))
- for item in dataset:
- img = item['inputs'].permute(1, 2, 0).numpy()
- data_sample = item['data_samples'].numpy()
- gt_instances = data_sample.gt_instances
- img_path = osp.basename(item['data_samples'].img_path)
- out_file = osp.join(
- args.output_dir,
- osp.basename(img_path)) if args.output_dir is not None else None
- img = img[..., [2, 1, 0]] # bgr to rgb
- gt_bboxes = gt_instances.get('bboxes', None)
- if gt_bboxes is not None and isinstance(gt_bboxes, BaseBoxes):
- gt_instances.bboxes = gt_bboxes.tensor
- gt_masks = gt_instances.get('masks', None)
- if gt_masks is not None:
- masks = mask2ndarray(gt_masks)
- gt_instances.masks = masks.astype(bool)
- data_sample.gt_instances = gt_instances
- visualizer.add_datasample(
- osp.basename(img_path),
- img,
- data_sample,
- draw_pred=False,
- show=not args.not_show,
- wait_time=args.show_interval,
- out_file=out_file)
- progress_bar.update()
- if __name__ == '__main__':
- main()
|