123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164 |
- # Copyright (c) OpenMMLab. All rights reserved.
- from unittest import TestCase
- import torch
- from mmcv.cnn import ConvModule, DepthwiseSeparableConvModule
- from mmengine.config import Config
- from mmengine.model import bias_init_with_prob
- from mmengine.structures import InstanceData
- from mmengine.testing import assert_allclose
- from mmdet.models.dense_heads import YOLOXHead
- class TestYOLOXHead(TestCase):
- def test_init_weights(self):
- head = YOLOXHead(
- num_classes=4, in_channels=1, stacked_convs=1, use_depthwise=False)
- head.init_weights()
- bias_init = bias_init_with_prob(0.01)
- for conv_cls, conv_obj in zip(head.multi_level_conv_cls,
- head.multi_level_conv_obj):
- assert_allclose(conv_cls.bias.data,
- torch.ones_like(conv_cls.bias.data) * bias_init)
- assert_allclose(conv_obj.bias.data,
- torch.ones_like(conv_obj.bias.data) * bias_init)
- def test_predict_by_feat(self):
- s = 256
- img_metas = [{
- 'img_shape': (s, s, 3),
- 'scale_factor': (1.0, 1.0),
- }]
- test_cfg = Config(
- dict(score_thr=0.01, nms=dict(type='nms', iou_threshold=0.65)))
- head = YOLOXHead(
- num_classes=4,
- in_channels=1,
- stacked_convs=1,
- use_depthwise=False,
- test_cfg=test_cfg)
- feat = [
- torch.rand(1, 1, s // feat_size, s // feat_size)
- for feat_size in [4, 8, 16]
- ]
- cls_scores, bbox_preds, objectnesses = head.forward(feat)
- head.predict_by_feat(
- cls_scores,
- bbox_preds,
- objectnesses,
- img_metas,
- cfg=test_cfg,
- rescale=True,
- with_nms=True)
- head.predict_by_feat(
- cls_scores,
- bbox_preds,
- objectnesses,
- img_metas,
- cfg=test_cfg,
- rescale=False,
- with_nms=False)
- def test_loss_by_feat(self):
- s = 256
- img_metas = [{
- 'img_shape': (s, s, 3),
- 'scale_factor': 1,
- }]
- train_cfg = Config(
- dict(
- assigner=dict(
- type='SimOTAAssigner',
- center_radius=2.5,
- candidate_topk=10,
- iou_weight=3.0,
- cls_weight=1.0)))
- head = YOLOXHead(
- num_classes=4,
- in_channels=1,
- stacked_convs=1,
- use_depthwise=False,
- train_cfg=train_cfg)
- assert not head.use_l1
- assert isinstance(head.multi_level_cls_convs[0][0], ConvModule)
- feat = [
- torch.rand(1, 1, s // feat_size, s // feat_size)
- for feat_size in [4, 8, 16]
- ]
- cls_scores, bbox_preds, objectnesses = head.forward(feat)
- # Test that empty ground truth encourages the network to predict
- # background
- gt_instances = InstanceData(
- bboxes=torch.empty((0, 4)), labels=torch.LongTensor([]))
- empty_gt_losses = head.loss_by_feat(cls_scores, bbox_preds,
- objectnesses, [gt_instances],
- img_metas)
- # When there is no truth, the cls loss should be nonzero but there
- # should be no box loss.
- empty_cls_loss = empty_gt_losses['loss_cls'].sum()
- empty_box_loss = empty_gt_losses['loss_bbox'].sum()
- empty_obj_loss = empty_gt_losses['loss_obj'].sum()
- self.assertEqual(
- empty_cls_loss.item(), 0,
- 'there should be no cls loss when there are no true boxes')
- self.assertEqual(
- empty_box_loss.item(), 0,
- 'there should be no box loss when there are no true boxes')
- self.assertGreater(empty_obj_loss.item(), 0,
- 'objectness loss should be non-zero')
- # When truth is non-empty then both cls and box loss should be nonzero
- # for random inputs
- head = YOLOXHead(
- num_classes=4,
- in_channels=1,
- stacked_convs=1,
- use_depthwise=True,
- train_cfg=train_cfg)
- assert isinstance(head.multi_level_cls_convs[0][0],
- DepthwiseSeparableConvModule)
- head.use_l1 = True
- gt_instances = InstanceData(
- bboxes=torch.Tensor([[23.6667, 23.8757, 238.6326, 151.8874]]),
- labels=torch.LongTensor([2]))
- one_gt_losses = head.loss_by_feat(cls_scores, bbox_preds, objectnesses,
- [gt_instances], img_metas)
- onegt_cls_loss = one_gt_losses['loss_cls'].sum()
- onegt_box_loss = one_gt_losses['loss_bbox'].sum()
- onegt_obj_loss = one_gt_losses['loss_obj'].sum()
- onegt_l1_loss = one_gt_losses['loss_l1'].sum()
- self.assertGreater(onegt_cls_loss.item(), 0,
- 'cls loss should be non-zero')
- self.assertGreater(onegt_box_loss.item(), 0,
- 'box loss should be non-zero')
- self.assertGreater(onegt_obj_loss.item(), 0,
- 'obj loss should be non-zero')
- self.assertGreater(onegt_l1_loss.item(), 0,
- 'l1 loss should be non-zero')
- # Test groud truth out of bound
- gt_instances = InstanceData(
- bboxes=torch.Tensor([[s * 4, s * 4, s * 4 + 10, s * 4 + 10]]),
- labels=torch.LongTensor([2]))
- empty_gt_losses = head.loss_by_feat(cls_scores, bbox_preds,
- objectnesses, [gt_instances],
- img_metas)
- # When gt_bboxes out of bound, the assign results should be empty,
- # so the cls and bbox loss should be zero.
- empty_cls_loss = empty_gt_losses['loss_cls'].sum()
- empty_box_loss = empty_gt_losses['loss_bbox'].sum()
- empty_obj_loss = empty_gt_losses['loss_obj'].sum()
- self.assertEqual(
- empty_cls_loss.item(), 0,
- 'there should be no cls loss when gt_bboxes out of bound')
- self.assertEqual(
- empty_box_loss.item(), 0,
- 'there should be no box loss when gt_bboxes out of bound')
- self.assertGreater(empty_obj_loss.item(), 0,
- 'objectness loss should be non-zero')
|