1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980 |
- # Copyright (c) OpenMMLab. All rights reserved.
- from unittest import TestCase
- import torch
- from mmengine.config import Config
- from mmengine.structures import InstanceData
- from mmdet.models.dense_heads import YOLOV3Head
- class TestYOLOV3Head(TestCase):
- def test_yolo_head_loss(self):
- """Tests YOLO head loss when truth is empty and non-empty."""
- s = 256
- img_metas = [{
- 'img_shape': (s, s, 3),
- 'scale_factor': 1,
- }]
- head = YOLOV3Head(
- num_classes=4,
- in_channels=[1, 1, 1],
- out_channels=[1, 1, 1],
- train_cfg=Config(
- dict(
- assigner=dict(
- type='GridAssigner',
- pos_iou_thr=0.5,
- neg_iou_thr=0.5,
- min_pos_iou=0))))
- head.init_weights()
- # YOLO head expects a multiple levels of features per image
- feats = [
- torch.rand(1, 1, s // stride[1], s // stride[0])
- for stride in head.prior_generator.strides
- ]
- predmaps, = head.forward(feats)
- # Test that empty ground truth encourages the network to
- # predict background
- gt_instances = InstanceData()
- gt_instances.bboxes = torch.empty((0, 4))
- gt_instances.labels = torch.LongTensor([])
- empty_gt_losses = head.loss_by_feat(predmaps, [gt_instances],
- img_metas)
- # When there is no truth, the conf loss should be nonzero but
- # cls loss and xy&wh loss should be zero
- empty_cls_loss = sum(empty_gt_losses['loss_cls']).item()
- empty_conf_loss = sum(empty_gt_losses['loss_conf']).item()
- empty_xy_loss = sum(empty_gt_losses['loss_xy']).item()
- empty_wh_loss = sum(empty_gt_losses['loss_wh']).item()
- self.assertGreater(empty_conf_loss, 0, 'conf loss should be non-zero')
- self.assertEqual(
- empty_cls_loss, 0,
- 'there should be no cls loss when there are no true boxes')
- self.assertEqual(
- empty_xy_loss, 0,
- 'there should be no xy loss when there are no true boxes')
- self.assertEqual(
- empty_wh_loss, 0,
- 'there should be no wh loss when there are no true boxes')
- # When truth is non-empty then all conf, cls loss and xywh loss
- # should be nonzero for random inputs
- gt_instances = InstanceData()
- gt_instances.bboxes = torch.Tensor(
- [[23.6667, 23.8757, 238.6326, 151.8874]])
- gt_instances.labels = torch.LongTensor([2])
- one_gt_losses = head.loss_by_feat(predmaps, [gt_instances], img_metas)
- one_gt_cls_loss = sum(one_gt_losses['loss_cls']).item()
- one_gt_conf_loss = sum(one_gt_losses['loss_conf']).item()
- one_gt_xy_loss = sum(one_gt_losses['loss_xy']).item()
- one_gt_wh_loss = sum(one_gt_losses['loss_wh']).item()
- self.assertGreater(one_gt_conf_loss, 0, 'conf loss should be non-zero')
- self.assertGreater(one_gt_cls_loss, 0, 'cls loss should be non-zero')
- self.assertGreater(one_gt_xy_loss, 0, 'xy loss should be non-zero')
- self.assertGreater(one_gt_wh_loss, 0, 'wh loss should be non-zero')
|