123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135 |
- # Copyright (c) OpenMMLab. All rights reserved.
- from unittest import TestCase
- import torch
- from mmengine import Config
- from mmengine.structures import InstanceData
- from mmdet import * # noqa
- from mmdet.models.dense_heads import VFNetHead
- class TestVFNetHead(TestCase):
- def test_vfnet_head_loss(self):
- """Tests vfnet head loss when truth is empty and non-empty."""
- s = 256
- img_metas = [{
- 'img_shape': (s, s, 3),
- 'scale_factor': 1,
- 'pad_shape': (s, s, 3)
- }]
- train_cfg = Config(
- dict(
- assigner=dict(type='ATSSAssigner', topk=9),
- allowed_border=-1,
- pos_weight=-1,
- debug=False))
- # since VarFocal Loss is not supported on CPU
- vfnet_head = VFNetHead(
- num_classes=4,
- in_channels=1,
- train_cfg=train_cfg,
- loss_cls=dict(
- type='VarifocalLoss', use_sigmoid=True, loss_weight=1.0))
- feat = [
- torch.rand(1, 1, s // feat_size, s // feat_size)
- for feat_size in [4, 8, 16, 32, 64]
- ]
- cls_scores, bbox_preds, bbox_preds_refine = vfnet_head.forward(feat)
- # Test that empty ground truth encourages the network to predict
- # background
- gt_instances = InstanceData()
- gt_instances.bboxes = torch.empty((0, 4))
- gt_instances.labels = torch.LongTensor([])
- empty_gt_losses = vfnet_head.loss_by_feat(cls_scores, bbox_preds,
- bbox_preds_refine,
- [gt_instances], img_metas)
- # When there is no truth, the cls loss should be nonzero but there
- # should be no box loss.
- empty_cls_loss = empty_gt_losses['loss_cls']
- empty_box_loss = empty_gt_losses['loss_bbox']
- self.assertGreater(empty_cls_loss.item(), 0,
- 'cls loss should be non-zero')
- self.assertEqual(
- empty_box_loss.item(), 0,
- 'there should be no box loss when there are no true boxes')
- # When truth is non-empty then both cls and box loss should be nonzero
- # for random inputs
- gt_instances = InstanceData()
- gt_instances.bboxes = torch.Tensor(
- [[23.6667, 23.8757, 238.6326, 151.8874]])
- gt_instances.labels = torch.LongTensor([2])
- one_gt_losses = vfnet_head.loss_by_feat(cls_scores, bbox_preds,
- bbox_preds_refine,
- [gt_instances], img_metas)
- onegt_cls_loss = one_gt_losses['loss_cls']
- onegt_box_loss = one_gt_losses['loss_bbox']
- self.assertGreater(onegt_cls_loss.item(), 0,
- 'cls loss should be non-zero')
- self.assertGreater(onegt_box_loss.item(), 0,
- 'box loss should be non-zero')
- def test_vfnet_head_loss_without_atss(self):
- """Tests vfnet head loss when truth is empty and non-empty."""
- s = 256
- img_metas = [{
- 'img_shape': (s, s, 3),
- 'scale_factor': 1,
- 'pad_shape': (s, s, 3)
- }]
- train_cfg = Config(
- dict(
- assigner=dict(type='ATSSAssigner', topk=9),
- allowed_border=-1,
- pos_weight=-1,
- debug=False))
- # since VarFocal Loss is not supported on CPU
- vfnet_head = VFNetHead(
- num_classes=4,
- in_channels=1,
- train_cfg=train_cfg,
- use_atss=False,
- loss_cls=dict(
- type='VarifocalLoss', use_sigmoid=True, loss_weight=1.0))
- feat = [
- torch.rand(1, 1, s // feat_size, s // feat_size)
- for feat_size in [4, 8, 16, 32, 64]
- ]
- cls_scores, bbox_preds, bbox_preds_refine = vfnet_head.forward(feat)
- # Test that empty ground truth encourages the network to predict
- # background
- gt_instances = InstanceData()
- gt_instances.bboxes = torch.empty((0, 4))
- gt_instances.labels = torch.LongTensor([])
- empty_gt_losses = vfnet_head.loss_by_feat(cls_scores, bbox_preds,
- bbox_preds_refine,
- [gt_instances], img_metas)
- # When there is no truth, the cls loss should be nonzero but there
- # should be no box loss.
- empty_cls_loss = empty_gt_losses['loss_cls']
- empty_box_loss = empty_gt_losses['loss_bbox']
- self.assertGreater(empty_cls_loss.item(), 0,
- 'cls loss should be non-zero')
- self.assertEqual(
- empty_box_loss.item(), 0,
- 'there should be no box loss when there are no true boxes')
- # When truth is non-empty then both cls and box loss should be nonzero
- # for random inputs
- gt_instances = InstanceData()
- gt_instances.bboxes = torch.Tensor(
- [[23.6667, 23.8757, 238.6326, 151.8874]])
- gt_instances.labels = torch.LongTensor([2])
- one_gt_losses = vfnet_head.loss_by_feat(cls_scores, bbox_preds,
- bbox_preds_refine,
- [gt_instances], img_metas)
- onegt_cls_loss = one_gt_losses['loss_cls']
- onegt_box_loss = one_gt_losses['loss_bbox']
- self.assertGreater(onegt_cls_loss.item(), 0,
- 'cls loss should be non-zero')
- self.assertGreater(onegt_box_loss.item(), 0,
- 'box loss should be non-zero')
|