123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193 |
- # Copyright (c) OpenMMLab. All rights reserved.
- from unittest import TestCase
- import torch
- from mmengine import Config, MessageHub
- from mmengine.structures import InstanceData
- from mmdet import * # noqa
- from mmdet.models.dense_heads import TOODHead
- def _tood_head(anchor_type):
- """Set type of tood head."""
- train_cfg = Config(
- dict(
- initial_epoch=4,
- initial_assigner=dict(type='ATSSAssigner', topk=9),
- assigner=dict(type='TaskAlignedAssigner', topk=13),
- alpha=1,
- beta=6,
- allowed_border=-1,
- pos_weight=-1,
- debug=False))
- test_cfg = Config(
- dict(
- nms_pre=1000,
- min_bbox_size=0,
- score_thr=0.05,
- nms=dict(type='nms', iou_threshold=0.6),
- max_per_img=100))
- tood_head = TOODHead(
- num_classes=80,
- in_channels=1,
- stacked_convs=1,
- feat_channels=8, # the same as `la_down_rate` in TaskDecomposition
- norm_cfg=None,
- anchor_type=anchor_type,
- anchor_generator=dict(
- type='AnchorGenerator',
- ratios=[1.0],
- octave_base_scale=8,
- scales_per_octave=1,
- strides=[8, 16, 32, 64, 128]),
- bbox_coder=dict(
- type='DeltaXYWHBBoxCoder',
- target_means=[.0, .0, .0, .0],
- target_stds=[0.1, 0.1, 0.2, 0.2]),
- initial_loss_cls=dict(
- type='FocalLoss',
- use_sigmoid=True,
- activated=True, # use probability instead of logit as input
- gamma=2.0,
- alpha=0.25,
- loss_weight=1.0),
- loss_cls=dict(
- type='QualityFocalLoss',
- use_sigmoid=True,
- activated=True, # use probability instead of logit as input
- beta=2.0,
- loss_weight=1.0),
- loss_bbox=dict(type='GIoULoss', loss_weight=2.0),
- train_cfg=train_cfg,
- test_cfg=test_cfg)
- return tood_head
- class TestTOODHead(TestCase):
- def test_tood_head_anchor_free_loss(self):
- """Tests tood head loss when truth is empty and non-empty."""
- s = 256
- img_metas = [{
- 'img_shape': (s, s, 3),
- 'pad_shape': (s, s, 3),
- 'scale_factor': 1
- }]
- tood_head = _tood_head('anchor_free')
- tood_head.init_weights()
- feat = [
- torch.rand(1, 1, s // feat_size, s // feat_size)
- for feat_size in [8, 16, 32, 64, 128]
- ]
- cls_scores, bbox_preds = tood_head(feat)
- message_hub = MessageHub.get_instance('runtime_info')
- message_hub.update_info('epoch', 0)
- # Test that empty ground truth encourages the network to predict
- # background
- gt_instances = InstanceData()
- gt_instances.bboxes = torch.empty((0, 4))
- gt_instances.labels = torch.LongTensor([])
- gt_bboxes_ignore = None
- empty_gt_losses = tood_head.loss_by_feat(cls_scores, bbox_preds,
- [gt_instances], img_metas,
- gt_bboxes_ignore)
- # When there is no truth, the cls loss should be nonzero but there
- # should be no box loss.
- empty_cls_loss = empty_gt_losses['loss_cls']
- empty_box_loss = empty_gt_losses['loss_bbox']
- self.assertGreater(
- sum(empty_cls_loss).item(), 0, 'cls loss should be non-zero')
- self.assertEqual(
- sum(empty_box_loss).item(), 0,
- 'there should be no box loss when there are no true boxes')
- # When truth is non-empty then both cls and box loss should be nonzero
- # for random inputs
- gt_instances = InstanceData()
- gt_instances.bboxes = torch.Tensor(
- [[23.6667, 23.8757, 238.6326, 151.8874]])
- gt_instances.labels = torch.LongTensor([2])
- gt_bboxes_ignore = None
- one_gt_losses = tood_head.loss_by_feat(cls_scores, bbox_preds,
- [gt_instances], img_metas,
- gt_bboxes_ignore)
- onegt_cls_loss = one_gt_losses['loss_cls']
- onegt_box_loss = one_gt_losses['loss_bbox']
- self.assertGreater(
- sum(onegt_cls_loss).item(), 0, 'cls loss should be non-zero')
- self.assertGreater(
- sum(onegt_box_loss).item(), 0, 'box loss should be non-zero')
- # Test that empty ground truth encourages the network to predict
- # background
- gt_instances = InstanceData()
- gt_instances.bboxes = torch.empty((0, 4))
- gt_instances.labels = torch.LongTensor([])
- gt_bboxes_ignore = None
- empty_gt_losses = tood_head.loss_by_feat(cls_scores, bbox_preds,
- [gt_instances], img_metas,
- gt_bboxes_ignore)
- # When there is no truth, the cls loss should be nonzero but there
- # should be no box loss.
- empty_cls_loss = empty_gt_losses['loss_cls']
- empty_box_loss = empty_gt_losses['loss_bbox']
- self.assertGreater(
- sum(empty_cls_loss).item(), 0, 'cls loss should be non-zero')
- self.assertEqual(
- sum(empty_box_loss).item(), 0,
- 'there should be no box loss when there are no true boxes')
- # When truth is non-empty then both cls and box loss should be nonzero
- # for random inputs
- gt_instances = InstanceData()
- gt_instances.bboxes = torch.Tensor(
- [[23.6667, 23.8757, 238.6326, 151.8874]])
- gt_instances.labels = torch.LongTensor([2])
- gt_bboxes_ignore = None
- one_gt_losses = tood_head.loss_by_feat(cls_scores, bbox_preds,
- [gt_instances], img_metas,
- gt_bboxes_ignore)
- onegt_cls_loss = one_gt_losses['loss_cls']
- onegt_box_loss = one_gt_losses['loss_bbox']
- self.assertGreater(
- sum(onegt_cls_loss).item(), 0, 'cls loss should be non-zero')
- self.assertGreater(
- sum(onegt_box_loss).item(), 0, 'box loss should be non-zero')
- def test_tood_head_anchor_based_loss(self):
- """Tests tood head loss when truth is empty and non-empty."""
- s = 256
- img_metas = [{
- 'img_shape': (s, s, 3),
- 'pad_shape': (s, s, 3),
- 'scale_factor': 1
- }]
- tood_head = _tood_head('anchor_based')
- tood_head.init_weights()
- feat = [
- torch.rand(1, 1, s // feat_size, s // feat_size)
- for feat_size in [8, 16, 32, 64, 128]
- ]
- cls_scores, bbox_preds = tood_head(feat)
- message_hub = MessageHub.get_instance('runtime_info')
- message_hub.update_info('epoch', 0)
- # Test that empty ground truth encourages the network to predict
- # background
- gt_instances = InstanceData()
- gt_instances.bboxes = torch.empty((0, 4))
- gt_instances.labels = torch.LongTensor([])
- gt_bboxes_ignore = None
- empty_gt_losses = tood_head.loss_by_feat(cls_scores, bbox_preds,
- [gt_instances], img_metas,
- gt_bboxes_ignore)
- # When there is no truth, the cls loss should be nonzero but there
- # should be no box loss.
- empty_cls_loss = empty_gt_losses['loss_cls']
- empty_box_loss = empty_gt_losses['loss_bbox']
- self.assertGreater(
- sum(empty_cls_loss).item(), 0, 'cls loss should be non-zero')
- self.assertEqual(
- sum(empty_box_loss).item(), 0,
- 'there should be no box loss when there are no true boxes')
|