123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144 |
- # Copyright (c) OpenMMLab. All rights reserved.
- from unittest import TestCase
- import numpy as np
- import torch
- from mmengine.config import ConfigDict
- from mmengine.structures import InstanceData
- from parameterized import parameterized
- from mmdet import * # noqa
- from mmdet.models.dense_heads import (DecoupledSOLOHead,
- DecoupledSOLOLightHead, SOLOHead)
- from mmdet.structures.mask import BitmapMasks
- def _rand_masks(num_items, bboxes, img_w, img_h):
- rng = np.random.RandomState(0)
- masks = np.zeros((num_items, img_h, img_w))
- for i, bbox in enumerate(bboxes):
- bbox = bbox.astype(np.int32)
- mask = (rng.rand(1, bbox[3] - bbox[1], bbox[2] - bbox[0]) >
- 0.3).astype(np.int64)
- masks[i:i + 1, bbox[1]:bbox[3], bbox[0]:bbox[2]] = mask
- return BitmapMasks(masks, height=img_h, width=img_w)
- class TestSOLOHead(TestCase):
- @parameterized.expand([(SOLOHead, ), (DecoupledSOLOHead, ),
- (DecoupledSOLOLightHead, )])
- def test_mask_head_loss(self, MaskHead):
- """Tests mask head loss when truth is empty and non-empty."""
- s = 256
- img_metas = [{
- 'img_shape': (s, s, 3),
- 'ori_shape': (s, s, 3),
- 'scale_factor': 1,
- 'batch_input_shape': (s, s, 3)
- }]
- mask_head = MaskHead(num_classes=4, in_channels=1)
- # SOLO head expects a multiple levels of features per image
- feats = []
- for i in range(len(mask_head.strides)):
- feats.append(
- torch.rand(1, 1, s // (2**(i + 2)), s // (2**(i + 2))))
- feats = tuple(feats)
- mask_outs = mask_head.forward(feats)
- # Test that empty ground truth encourages the network to
- # predict background
- gt_instances = InstanceData()
- gt_instances.bboxes = torch.empty(0, 4)
- gt_instances.labels = torch.LongTensor([])
- gt_instances.masks = _rand_masks(0, gt_instances.bboxes.numpy(), s, s)
- empty_gt_losses = mask_head.loss_by_feat(
- *mask_outs,
- batch_gt_instances=[gt_instances],
- batch_img_metas=img_metas)
- # When there is no truth, the cls loss should be nonzero but
- # there should be no box loss.
- empty_cls_loss = empty_gt_losses['loss_cls']
- empty_mask_loss = empty_gt_losses['loss_mask']
- self.assertGreater(empty_cls_loss.item(), 0,
- 'cls loss should be non-zero')
- self.assertEqual(
- empty_mask_loss.item(), 0,
- 'there should be no mask loss when there are no true mask')
- # When truth is non-empty then both cls and box loss
- # should be nonzero for random inputs
- gt_instances = InstanceData()
- gt_instances.bboxes = torch.Tensor(
- [[23.6667, 23.8757, 238.6326, 151.8874]])
- gt_instances.labels = torch.LongTensor([2])
- gt_instances.masks = _rand_masks(1, gt_instances.bboxes.numpy(), s, s)
- one_gt_losses = mask_head.loss_by_feat(
- *mask_outs,
- batch_gt_instances=[gt_instances],
- batch_img_metas=img_metas)
- onegt_cls_loss = one_gt_losses['loss_cls']
- onegt_mask_loss = one_gt_losses['loss_mask']
- self.assertGreater(onegt_cls_loss.item(), 0,
- 'cls loss should be non-zero')
- self.assertGreater(onegt_mask_loss.item(), 0,
- 'mask loss should be non-zero')
- def test_solo_head_empty_result(self):
- s = 256
- img_metas = {
- 'img_shape': (s, s, 3),
- 'ori_shape': (s, s, 3),
- 'scale_factor': 1,
- 'batch_input_shape': (s, s, 3)
- }
- mask_head = SOLOHead(num_classes=4, in_channels=1)
- cls_scores = torch.empty(0, 80)
- mask_preds = torch.empty(0, 16, 16)
- test_cfg = ConfigDict(
- score_thr=0.1,
- mask_thr=0.5,
- )
- results = mask_head._predict_by_feat_single(
- cls_scores=cls_scores,
- mask_preds=mask_preds,
- img_meta=img_metas,
- cfg=test_cfg)
- self.assertIsInstance(results, InstanceData)
- self.assertEqual(len(results), 0)
- def test_decoupled_solo_head_empty_result(self):
- s = 256
- img_metas = {
- 'img_shape': (s, s, 3),
- 'ori_shape': (s, s, 3),
- 'scale_factor': 1,
- 'batch_input_shape': (s, s, 3)
- }
- mask_head = DecoupledSOLOHead(num_classes=4, in_channels=1)
- cls_scores = torch.empty(0, 80)
- mask_preds_x = torch.empty(0, 16, 16)
- mask_preds_y = torch.empty(0, 16, 16)
- test_cfg = ConfigDict(
- score_thr=0.1,
- mask_thr=0.5,
- )
- results = mask_head._predict_by_feat_single(
- cls_scores=cls_scores,
- mask_preds_x=mask_preds_x,
- mask_preds_y=mask_preds_y,
- img_meta=img_metas,
- cfg=test_cfg)
- self.assertIsInstance(results, InstanceData)
- self.assertEqual(len(results), 0)
|