123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124 |
- # Copyright (c) OpenMMLab. All rights reserved.
- from unittest import TestCase
- import pytest
- import torch
- from mmengine import Config
- from mmengine.structures import InstanceData
- from mmdet import * # noqa
- from mmdet.models.dense_heads import RPNHead
- class TestRPNHead(TestCase):
- def test_init(self):
- """Test init rpn head."""
- rpn_head = RPNHead(num_classes=1, in_channels=1)
- self.assertTrue(rpn_head.rpn_conv)
- self.assertTrue(rpn_head.rpn_cls)
- self.assertTrue(rpn_head.rpn_reg)
- # rpn_head.num_convs > 1
- rpn_head = RPNHead(num_classes=1, in_channels=1, num_convs=2)
- self.assertTrue(rpn_head.rpn_conv)
- self.assertTrue(rpn_head.rpn_cls)
- self.assertTrue(rpn_head.rpn_reg)
- def test_rpn_head_loss(self):
- """Tests rpn head loss when truth is empty and non-empty."""
- s = 256
- img_metas = [{
- 'img_shape': (s, s, 3),
- 'pad_shape': (s, s, 3),
- 'scale_factor': 1,
- }]
- cfg = Config(
- dict(
- assigner=dict(
- type='MaxIoUAssigner',
- pos_iou_thr=0.7,
- neg_iou_thr=0.3,
- min_pos_iou=0.3,
- ignore_iof_thr=-1),
- sampler=dict(
- type='RandomSampler',
- num=256,
- pos_fraction=0.5,
- neg_pos_ub=-1,
- add_gt_as_proposals=False),
- allowed_border=0,
- pos_weight=-1,
- debug=False))
- rpn_head = RPNHead(num_classes=1, in_channels=1, train_cfg=cfg)
- # Anchor head expects a multiple levels of features per image
- feats = (
- torch.rand(1, 1, s // (2**(i + 2)), s // (2**(i + 2)))
- for i in range(len(rpn_head.prior_generator.strides)))
- cls_scores, bbox_preds = rpn_head.forward(feats)
- # Test that empty ground truth encourages the network to
- # predict background
- gt_instances = InstanceData()
- gt_instances.bboxes = torch.empty((0, 4))
- gt_instances.labels = torch.LongTensor([])
- empty_gt_losses = rpn_head.loss_by_feat(cls_scores, bbox_preds,
- [gt_instances], img_metas)
- # When there is no truth, the cls loss should be nonzero but
- # there should be no box loss.
- empty_cls_loss = sum(empty_gt_losses['loss_rpn_cls'])
- empty_box_loss = sum(empty_gt_losses['loss_rpn_bbox'])
- self.assertGreater(empty_cls_loss.item(), 0,
- 'rpn cls loss should be non-zero')
- self.assertEqual(
- empty_box_loss.item(), 0,
- 'there should be no box loss when there are no true boxes')
- # When truth is non-empty then both cls and box loss
- # should be nonzero for random inputs
- gt_instances = InstanceData()
- gt_instances.bboxes = torch.Tensor(
- [[23.6667, 23.8757, 238.6326, 151.8874]])
- gt_instances.labels = torch.LongTensor([0])
- one_gt_losses = rpn_head.loss_by_feat(cls_scores, bbox_preds,
- [gt_instances], img_metas)
- onegt_cls_loss = sum(one_gt_losses['loss_rpn_cls'])
- onegt_box_loss = sum(one_gt_losses['loss_rpn_bbox'])
- self.assertGreater(onegt_cls_loss.item(), 0,
- 'rpn cls loss should be non-zero')
- self.assertGreater(onegt_box_loss.item(), 0,
- 'rpn box loss should be non-zero')
- # When there is no valid anchor, the loss will be None,
- # and this will raise a ValueError.
- img_metas = [{
- 'img_shape': (8, 8, 3),
- 'pad_shape': (8, 8, 3),
- 'scale_factor': 1,
- }]
- with pytest.raises(ValueError):
- rpn_head.loss_by_feat(cls_scores, bbox_preds, [gt_instances],
- img_metas)
- def test_bbox_post_process(self):
- """Test the length of detection instance results is 0."""
- from mmengine.config import ConfigDict
- cfg = ConfigDict(
- nms_pre=1000,
- max_per_img=1000,
- nms=dict(type='nms', iou_threshold=0.7),
- min_bbox_size=0)
- rpn_head = RPNHead(num_classes=1, in_channels=1)
- results = InstanceData(metainfo=dict())
- results.bboxes = torch.zeros((0, 4))
- results.scores = torch.zeros(0)
- results = rpn_head._bbox_post_process(results, cfg, img_meta=dict())
- self.assertEqual(len(results), 0)
- self.assertEqual(results.bboxes.size(), (0, 4))
- self.assertEqual(results.scores.size(), (0, ))
- self.assertEqual(results.labels.size(), (0, ))
|