12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061 |
- # Copyright (c) OpenMMLab. All rights reserved.
- from unittest import TestCase
- import torch
- from mmengine.structures import InstanceData
- from mmdet.models.dense_heads import FoveaHead
- class TestFOVEAHead(TestCase):
- def test_fovea_head_loss(self):
- """Tests anchor head loss when truth is empty and non-empty."""
- s = 256
- img_metas = [{
- 'img_shape': (s, s, 3),
- 'pad_shape': (s, s, 3),
- 'scale_factor': 1,
- }]
- fovea_head = FoveaHead(num_classes=4, in_channels=1)
- # Anchor head expects a multiple levels of features per image
- feats = (
- torch.rand(1, 1, s // (2**(i + 2)), s // (2**(i + 2)))
- for i in range(len(fovea_head.prior_generator.strides)))
- cls_scores, bbox_preds = fovea_head.forward(feats)
- # Test that empty ground truth encourages the network to
- # predict background
- gt_instances = InstanceData()
- gt_instances.bboxes = torch.empty((0, 4))
- gt_instances.labels = torch.LongTensor([])
- empty_gt_losses = fovea_head.loss_by_feat(cls_scores, bbox_preds,
- [gt_instances], img_metas)
- # When there is no truth, the cls loss should be nonzero but
- # there should be no box loss.
- empty_cls_loss = empty_gt_losses['loss_cls']
- empty_box_loss = empty_gt_losses['loss_bbox']
- self.assertGreater(empty_cls_loss.item(), 0,
- 'cls loss should be non-zero')
- self.assertEqual(
- empty_box_loss.item(), 0,
- 'there should be no box loss when there are no true boxes')
- # When truth is non-empty then both cls and box loss
- # should be nonzero for random inputs
- gt_instances = InstanceData()
- gt_instances.bboxes = torch.Tensor(
- [[23.6667, 23.8757, 238.6326, 151.8874]])
- gt_instances.labels = torch.LongTensor([2])
- one_gt_losses = fovea_head.loss_by_feat(cls_scores, bbox_preds,
- [gt_instances], img_metas)
- onegt_cls_loss = one_gt_losses['loss_cls']
- onegt_box_loss = one_gt_losses['loss_bbox']
- self.assertGreater(onegt_cls_loss.item(), 0,
- 'cls loss should be non-zero')
- self.assertGreater(onegt_box_loss.item(), 0,
- 'box loss should be non-zero')
|