12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697 |
- # Copyright (c) OpenMMLab. All rights reserved.
- from unittest import TestCase
- import torch
- from mmengine.structures import InstanceData
- from mmdet.models.dense_heads import FCOSHead
- class TestFCOSHead(TestCase):
- def test_fcos_head_loss(self):
- """Tests fcos head loss when truth is empty and non-empty."""
- s = 256
- img_metas = [{
- 'img_shape': (s, s, 3),
- 'pad_shape': (s, s, 3),
- 'scale_factor': 1,
- }]
- fcos_head = FCOSHead(
- num_classes=4,
- in_channels=1,
- feat_channels=1,
- stacked_convs=1,
- norm_cfg=None)
- # Fcos head expects a multiple levels of features per image
- feats = (
- torch.rand(1, 1, s // stride[1], s // stride[0])
- for stride in fcos_head.prior_generator.strides)
- cls_scores, bbox_preds, centernesses = fcos_head.forward(feats)
- # Test that empty ground truth encourages the network to
- # predict background
- gt_instances = InstanceData()
- gt_instances.bboxes = torch.empty((0, 4))
- gt_instances.labels = torch.LongTensor([])
- empty_gt_losses = fcos_head.loss_by_feat(cls_scores, bbox_preds,
- centernesses, [gt_instances],
- img_metas)
- # When there is no truth, the cls loss should be nonzero but
- # box loss and centerness loss should be zero
- empty_cls_loss = empty_gt_losses['loss_cls'].item()
- empty_box_loss = empty_gt_losses['loss_bbox'].item()
- empty_ctr_loss = empty_gt_losses['loss_centerness'].item()
- self.assertGreater(empty_cls_loss, 0, 'cls loss should be non-zero')
- self.assertEqual(
- empty_box_loss, 0,
- 'there should be no box loss when there are no true boxes')
- self.assertEqual(
- empty_ctr_loss, 0,
- 'there should be no centerness loss when there are no true boxes')
- # When truth is non-empty then all cls, box loss and centerness loss
- # should be nonzero for random inputs
- gt_instances = InstanceData()
- gt_instances.bboxes = torch.Tensor(
- [[23.6667, 23.8757, 238.6326, 151.8874]])
- gt_instances.labels = torch.LongTensor([2])
- one_gt_losses = fcos_head.loss_by_feat(cls_scores, bbox_preds,
- centernesses, [gt_instances],
- img_metas)
- onegt_cls_loss = one_gt_losses['loss_cls'].item()
- onegt_box_loss = one_gt_losses['loss_bbox'].item()
- onegt_ctr_loss = one_gt_losses['loss_centerness'].item()
- self.assertGreater(onegt_cls_loss, 0, 'cls loss should be non-zero')
- self.assertGreater(onegt_box_loss, 0, 'box loss should be non-zero')
- self.assertGreater(onegt_ctr_loss, 0,
- 'centerness loss should be non-zero')
- # Test the `center_sampling` works fine.
- fcos_head.center_sampling = True
- ctrsamp_losses = fcos_head.loss_by_feat(cls_scores, bbox_preds,
- centernesses, [gt_instances],
- img_metas)
- ctrsamp_cls_loss = ctrsamp_losses['loss_cls'].item()
- ctrsamp_box_loss = ctrsamp_losses['loss_bbox'].item()
- ctrsamp_ctr_loss = ctrsamp_losses['loss_centerness'].item()
- self.assertGreater(ctrsamp_cls_loss, 0, 'cls loss should be non-zero')
- self.assertGreater(ctrsamp_box_loss, 0, 'box loss should be non-zero')
- self.assertGreater(ctrsamp_ctr_loss, 0,
- 'centerness loss should be non-zero')
- # Test the `norm_on_bbox` works fine.
- fcos_head.norm_on_bbox = True
- normbox_losses = fcos_head.loss_by_feat(cls_scores, bbox_preds,
- centernesses, [gt_instances],
- img_metas)
- normbox_cls_loss = normbox_losses['loss_cls'].item()
- normbox_box_loss = normbox_losses['loss_bbox'].item()
- normbox_ctr_loss = normbox_losses['loss_centerness'].item()
- self.assertGreater(normbox_cls_loss, 0, 'cls loss should be non-zero')
- self.assertGreater(normbox_box_loss, 0, 'box loss should be non-zero')
- self.assertGreater(normbox_ctr_loss, 0,
- 'centerness loss should be non-zero')
|