1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374 |
- # Copyright (c) OpenMMLab. All rights reserved.
- from unittest import TestCase
- import torch
- from mmengine.structures import InstanceData
- from mmdet.models.dense_heads import CentripetalHead
- class TestCentripetalHead(TestCase):
- def test_centripetal_head_loss(self):
- """Tests corner head loss when truth is empty and non-empty."""
- s = 256
- img_metas = [{
- 'img_shape': (s, s, 3),
- 'scale_factor': 1,
- 'batch_input_shape': (s, s, 3)
- }]
- centripetal_head = CentripetalHead(
- num_classes=4, in_channels=1, corner_emb_channels=0)
- # Corner head expects a multiple levels of features per image
- feat = [
- torch.rand(1, 1, s // 4, s // 4)
- for _ in range(centripetal_head.num_feat_levels)
- ]
- forward_outputs = centripetal_head.forward(feat)
- # Test that empty ground truth encourages the network
- # to predict background
- gt_instances = InstanceData()
- gt_instances.bboxes = torch.empty((0, 4))
- gt_instances.labels = torch.LongTensor([])
- gt_bboxes_ignore = None
- empty_gt_losses = centripetal_head.loss_by_feat(
- *forward_outputs, [gt_instances], img_metas, gt_bboxes_ignore)
- empty_det_loss = sum(empty_gt_losses['det_loss'])
- empty_guiding_loss = sum(empty_gt_losses['guiding_loss'])
- empty_centripetal_loss = sum(empty_gt_losses['centripetal_loss'])
- empty_off_loss = sum(empty_gt_losses['off_loss'])
- self.assertTrue(empty_det_loss.item() > 0,
- 'det loss should be non-zero')
- self.assertTrue(
- empty_guiding_loss.item() == 0,
- 'there should be no guiding loss when there are no true boxes')
- self.assertTrue(
- empty_centripetal_loss.item() == 0,
- 'there should be no centripetal loss when there are no true boxes')
- self.assertTrue(
- empty_off_loss.item() == 0,
- 'there should be no box loss when there are no true boxes')
- gt_instances = InstanceData()
- gt_instances.bboxes = torch.Tensor(
- [[23.6667, 23.8757, 238.6326, 151.8874],
- [123.6667, 123.8757, 138.6326, 251.8874]])
- gt_instances.labels = torch.LongTensor([2, 3])
- two_gt_losses = centripetal_head.loss_by_feat(*forward_outputs,
- [gt_instances],
- img_metas,
- gt_bboxes_ignore)
- twogt_det_loss = sum(two_gt_losses['det_loss'])
- twogt_guiding_loss = sum(two_gt_losses['guiding_loss'])
- twogt_centripetal_loss = sum(two_gt_losses['centripetal_loss'])
- twogt_off_loss = sum(two_gt_losses['off_loss'])
- assert twogt_det_loss.item() > 0, 'det loss should be non-zero'
- assert twogt_guiding_loss.item() > 0, 'push loss should be non-zero'
- assert twogt_centripetal_loss.item(
- ) > 0, 'pull loss should be non-zero'
- assert twogt_off_loss.item() > 0, 'off loss should be non-zero'
|