12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394 |
- # Copyright (c) OpenMMLab. All rights reserved.
- from unittest import TestCase
- import torch
- from mmengine import Config
- from mmengine.structures import InstanceData
- from mmdet import * # noqa
- from mmdet.models.dense_heads import ATSSHead
- class TestATSSHead(TestCase):
- def test_atss_head_loss(self):
- """Tests atss head loss when truth is empty and non-empty."""
- s = 256
- img_metas = [{
- 'img_shape': (s, s, 3),
- 'pad_shape': (s, s, 3),
- 'scale_factor': 1
- }]
- cfg = Config(
- dict(
- assigner=dict(type='ATSSAssigner', topk=9),
- allowed_border=-1,
- pos_weight=-1,
- debug=False))
- atss_head = ATSSHead(
- num_classes=4,
- in_channels=1,
- stacked_convs=1,
- feat_channels=1,
- norm_cfg=None,
- train_cfg=cfg,
- anchor_generator=dict(
- type='AnchorGenerator',
- ratios=[1.0],
- octave_base_scale=8,
- scales_per_octave=1,
- strides=[8, 16, 32, 64, 128]),
- loss_cls=dict(
- type='FocalLoss',
- use_sigmoid=True,
- gamma=2.0,
- alpha=0.25,
- loss_weight=1.0),
- loss_bbox=dict(type='GIoULoss', loss_weight=2.0))
- feat = [
- torch.rand(1, 1, s // feat_size, s // feat_size)
- for feat_size in [8, 16, 32, 64, 128]
- ]
- cls_scores, bbox_preds, centernesses = atss_head.forward(feat)
- # Test that empty ground truth encourages the network to predict
- # background
- gt_instances = InstanceData()
- gt_instances.bboxes = torch.empty((0, 4))
- gt_instances.labels = torch.LongTensor([])
- empty_gt_losses = atss_head.loss_by_feat(cls_scores, bbox_preds,
- centernesses, [gt_instances],
- img_metas)
- # When there is no truth, the cls loss should be nonzero but there
- # should be no box loss.
- empty_cls_loss = sum(empty_gt_losses['loss_cls'])
- empty_box_loss = sum(empty_gt_losses['loss_bbox'])
- empty_centerness_loss = sum(empty_gt_losses['loss_centerness'])
- self.assertGreater(empty_cls_loss.item(), 0,
- 'cls loss should be non-zero')
- self.assertEqual(
- empty_box_loss.item(), 0,
- 'there should be no box loss when there are no true boxes')
- self.assertEqual(
- empty_centerness_loss.item(), 0,
- 'there should be no centerness loss when there are no true boxes')
- # When truth is non-empty then both cls and box loss should be nonzero
- # for random inputs
- gt_instances = InstanceData()
- gt_instances.bboxes = torch.Tensor(
- [[23.6667, 23.8757, 238.6326, 151.8874]])
- gt_instances.labels = torch.LongTensor([2])
- one_gt_losses = atss_head.loss_by_feat(cls_scores, bbox_preds,
- centernesses, [gt_instances],
- img_metas)
- onegt_cls_loss = sum(one_gt_losses['loss_cls'])
- onegt_box_loss = sum(one_gt_losses['loss_bbox'])
- onegt_centerness_loss = sum(one_gt_losses['loss_centerness'])
- self.assertGreater(onegt_cls_loss.item(), 0,
- 'cls loss should be non-zero')
- self.assertGreater(onegt_box_loss.item(), 0,
- 'box loss should be non-zero')
- self.assertGreater(onegt_centerness_loss.item(), 0,
- 'centerness loss should be non-zero')
|