123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105 |
- # Copyright (c) OpenMMLab. All rights reserved.
- import pytest
- import torch
- from mmdet.models.backbones import ResNeXt
- from mmdet.models.backbones.resnext import Bottleneck as BottleneckX
- from .utils import is_block
- def test_renext_bottleneck():
- with pytest.raises(AssertionError):
- # Style must be in ['pytorch', 'caffe']
- BottleneckX(64, 64, groups=32, base_width=4, style='tensorflow')
- # Test ResNeXt Bottleneck structure
- block = BottleneckX(
- 64, 64, groups=32, base_width=4, stride=2, style='pytorch')
- assert block.conv2.stride == (2, 2)
- assert block.conv2.groups == 32
- assert block.conv2.out_channels == 128
- # Test ResNeXt Bottleneck with DCN
- dcn = dict(type='DCN', deform_groups=1, fallback_on_stride=False)
- with pytest.raises(AssertionError):
- # conv_cfg must be None if dcn is not None
- BottleneckX(
- 64,
- 64,
- groups=32,
- base_width=4,
- dcn=dcn,
- conv_cfg=dict(type='Conv'))
- BottleneckX(64, 64, dcn=dcn)
- # Test ResNeXt Bottleneck forward
- block = BottleneckX(64, 16, groups=32, base_width=4)
- x = torch.randn(1, 64, 56, 56)
- x_out = block(x)
- assert x_out.shape == torch.Size([1, 64, 56, 56])
- # Test ResNeXt Bottleneck forward with plugins
- plugins = [
- dict(
- cfg=dict(
- type='GeneralizedAttention',
- spatial_range=-1,
- num_heads=8,
- attention_type='0010',
- kv_stride=2),
- stages=(False, False, True, True),
- position='after_conv2')
- ]
- block = BottleneckX(64, 16, groups=32, base_width=4, plugins=plugins)
- x = torch.randn(1, 64, 56, 56)
- x_out = block(x)
- assert x_out.shape == torch.Size([1, 64, 56, 56])
- def test_resnext_backbone():
- with pytest.raises(KeyError):
- # ResNeXt depth should be in [50, 101, 152]
- ResNeXt(depth=18)
- # Test ResNeXt with group 32, base_width 4
- model = ResNeXt(depth=50, groups=32, base_width=4)
- for m in model.modules():
- if is_block(m):
- assert m.conv2.groups == 32
- model.train()
- imgs = torch.randn(1, 3, 32, 32)
- feat = model(imgs)
- assert len(feat) == 4
- assert feat[0].shape == torch.Size([1, 256, 8, 8])
- assert feat[1].shape == torch.Size([1, 512, 4, 4])
- assert feat[2].shape == torch.Size([1, 1024, 2, 2])
- assert feat[3].shape == torch.Size([1, 2048, 1, 1])
- regnet_test_data = [
- ('regnetx_400mf',
- dict(w0=24, wa=24.48, wm=2.54, group_w=16, depth=22,
- bot_mul=1.0), [32, 64, 160, 384]),
- ('regnetx_800mf',
- dict(w0=56, wa=35.73, wm=2.28, group_w=16, depth=16,
- bot_mul=1.0), [64, 128, 288, 672]),
- ('regnetx_1.6gf',
- dict(w0=80, wa=34.01, wm=2.25, group_w=24, depth=18,
- bot_mul=1.0), [72, 168, 408, 912]),
- ('regnetx_3.2gf',
- dict(w0=88, wa=26.31, wm=2.25, group_w=48, depth=25,
- bot_mul=1.0), [96, 192, 432, 1008]),
- ('regnetx_4.0gf',
- dict(w0=96, wa=38.65, wm=2.43, group_w=40, depth=23,
- bot_mul=1.0), [80, 240, 560, 1360]),
- ('regnetx_6.4gf',
- dict(w0=184, wa=60.83, wm=2.07, group_w=56, depth=17,
- bot_mul=1.0), [168, 392, 784, 1624]),
- ('regnetx_8.0gf',
- dict(w0=80, wa=49.56, wm=2.88, group_w=120, depth=23,
- bot_mul=1.0), [80, 240, 720, 1920]),
- ('regnetx_12gf',
- dict(w0=168, wa=73.36, wm=2.37, group_w=112, depth=19,
- bot_mul=1.0), [224, 448, 896, 2240]),
- ]
|