12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758 |
- # Copyright (c) OpenMMLab. All rights reserved.
- import pytest
- import torch
- from mmdet.models.backbones import RegNet
- regnet_test_data = [
- ('regnetx_400mf',
- dict(w0=24, wa=24.48, wm=2.54, group_w=16, depth=22,
- bot_mul=1.0), [32, 64, 160, 384]),
- ('regnetx_800mf',
- dict(w0=56, wa=35.73, wm=2.28, group_w=16, depth=16,
- bot_mul=1.0), [64, 128, 288, 672]),
- ('regnetx_1.6gf',
- dict(w0=80, wa=34.01, wm=2.25, group_w=24, depth=18,
- bot_mul=1.0), [72, 168, 408, 912]),
- ('regnetx_3.2gf',
- dict(w0=88, wa=26.31, wm=2.25, group_w=48, depth=25,
- bot_mul=1.0), [96, 192, 432, 1008]),
- ('regnetx_4.0gf',
- dict(w0=96, wa=38.65, wm=2.43, group_w=40, depth=23,
- bot_mul=1.0), [80, 240, 560, 1360]),
- ('regnetx_6.4gf',
- dict(w0=184, wa=60.83, wm=2.07, group_w=56, depth=17,
- bot_mul=1.0), [168, 392, 784, 1624]),
- ('regnetx_8.0gf',
- dict(w0=80, wa=49.56, wm=2.88, group_w=120, depth=23,
- bot_mul=1.0), [80, 240, 720, 1920]),
- ('regnetx_12gf',
- dict(w0=168, wa=73.36, wm=2.37, group_w=112, depth=19,
- bot_mul=1.0), [224, 448, 896, 2240]),
- ]
- @pytest.mark.parametrize('arch_name,arch,out_channels', regnet_test_data)
- def test_regnet_backbone(arch_name, arch, out_channels):
- with pytest.raises(AssertionError):
- # ResNeXt depth should be in [50, 101, 152]
- RegNet(arch_name + '233')
- # Test RegNet with arch_name
- model = RegNet(arch_name)
- model.train()
- imgs = torch.randn(1, 3, 32, 32)
- feat = model(imgs)
- assert len(feat) == 4
- assert feat[0].shape == torch.Size([1, out_channels[0], 8, 8])
- assert feat[1].shape == torch.Size([1, out_channels[1], 4, 4])
- assert feat[2].shape == torch.Size([1, out_channels[2], 2, 2])
- assert feat[3].shape == torch.Size([1, out_channels[3], 1, 1])
- # Test RegNet with arch
- model = RegNet(arch)
- assert feat[0].shape == torch.Size([1, out_channels[0], 8, 8])
- assert feat[1].shape == torch.Size([1, out_channels[1], 4, 4])
- assert feat[2].shape == torch.Size([1, out_channels[2], 2, 2])
- assert feat[3].shape == torch.Size([1, out_channels[3], 1, 1])
|