123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363 |
- import os.path as osp
- import tempfile
- import unittest
- import numpy as np
- import pycocotools.mask as mask_util
- import torch
- from mmdet.evaluation.metrics import LVISMetric
- try:
- import lvis
- except ImportError:
- lvis = None
- from mmengine.fileio import dump
- class TestLVISMetric(unittest.TestCase):
- def _create_dummy_lvis_json(self, json_name):
- dummy_mask = np.zeros((10, 10), order='F', dtype=np.uint8)
- dummy_mask[:5, :5] = 1
- rle_mask = mask_util.encode(dummy_mask)
- rle_mask['counts'] = rle_mask['counts'].decode('utf-8')
- image = {
- 'id': 0,
- 'width': 640,
- 'height': 640,
- 'neg_category_ids': [],
- 'not_exhaustive_category_ids': [],
- 'coco_url': 'http://images.cocodataset.org/val2017/0.jpg',
- }
- annotation_1 = {
- 'id': 1,
- 'image_id': 0,
- 'category_id': 1,
- 'area': 400,
- 'bbox': [50, 60, 20, 20],
- 'segmentation': rle_mask,
- }
- annotation_2 = {
- 'id': 2,
- 'image_id': 0,
- 'category_id': 1,
- 'area': 900,
- 'bbox': [100, 120, 30, 30],
- 'segmentation': rle_mask,
- }
- annotation_3 = {
- 'id': 3,
- 'image_id': 0,
- 'category_id': 2,
- 'area': 1600,
- 'bbox': [150, 160, 40, 40],
- 'segmentation': rle_mask,
- }
- annotation_4 = {
- 'id': 4,
- 'image_id': 0,
- 'category_id': 1,
- 'area': 10000,
- 'bbox': [250, 260, 100, 100],
- 'segmentation': rle_mask,
- }
- categories = [
- {
- 'id': 1,
- 'name': 'aerosol_can',
- 'frequency': 'c',
- 'image_count': 64
- },
- {
- 'id': 2,
- 'name': 'air_conditioner',
- 'frequency': 'f',
- 'image_count': 364
- },
- ]
- fake_json = {
- 'images': [image],
- 'annotations':
- [annotation_1, annotation_2, annotation_3, annotation_4],
- 'categories': categories
- }
- dump(fake_json, json_name)
- def _create_dummy_results(self):
- bboxes = np.array([[50, 60, 70, 80], [100, 120, 130, 150],
- [150, 160, 190, 200], [250, 260, 350, 360]])
- scores = np.array([1.0, 0.98, 0.96, 0.95])
- labels = np.array([0, 0, 1, 0])
- dummy_mask = np.zeros((4, 10, 10), dtype=np.uint8)
- dummy_mask[:, :5, :5] = 1
- return dict(
- bboxes=torch.from_numpy(bboxes),
- scores=torch.from_numpy(scores),
- labels=torch.from_numpy(labels),
- masks=torch.from_numpy(dummy_mask))
- def setUp(self):
- self.tmp_dir = tempfile.TemporaryDirectory()
- def tearDown(self):
- self.tmp_dir.cleanup()
- @unittest.skipIf(lvis is None, 'lvis is not installed.')
- def test_init(self):
- fake_json_file = osp.join(self.tmp_dir.name, 'fake_data.json')
- self._create_dummy_lvis_json(fake_json_file)
- with self.assertRaisesRegex(KeyError, 'metric should be one of'):
- LVISMetric(ann_file=fake_json_file, metric='unknown')
- @unittest.skipIf(lvis is None, 'lvis is not installed.')
- def test_evaluate(self):
- # create dummy data
- fake_json_file = osp.join(self.tmp_dir.name, 'fake_data.json')
- self._create_dummy_lvis_json(fake_json_file)
- dummy_pred = self._create_dummy_results()
- # test single lvis dataset evaluation
- lvis_metric = LVISMetric(
- ann_file=fake_json_file,
- classwise=False,
- outfile_prefix=f'{self.tmp_dir.name}/test')
- lvis_metric.dataset_meta = dict(
- classes=['aerosol_can', 'air_conditioner'])
- lvis_metric.process(
- {},
- [dict(pred_instances=dummy_pred, img_id=0, ori_shape=(640, 640))])
- eval_results = lvis_metric.evaluate(size=1)
- target = {
- 'lvis/bbox_AP': 1.0,
- 'lvis/bbox_AP50': 1.0,
- 'lvis/bbox_AP75': 1.0,
- 'lvis/bbox_APs': 1.0,
- 'lvis/bbox_APm': 1.0,
- 'lvis/bbox_APl': 1.0,
- 'lvis/bbox_APr': -1.0,
- 'lvis/bbox_APc': 1.0,
- 'lvis/bbox_APf': 1.0
- }
- self.assertDictEqual(eval_results, target)
- self.assertTrue(
- osp.isfile(osp.join(self.tmp_dir.name, 'test.bbox.json')))
- # test box and segm lvis dataset evaluation
- lvis_metric = LVISMetric(
- ann_file=fake_json_file,
- metric=['bbox', 'segm'],
- classwise=False,
- outfile_prefix=f'{self.tmp_dir.name}/test')
- lvis_metric.dataset_meta = dict(
- classes=['aerosol_can', 'air_conditioner'])
- lvis_metric.process(
- {},
- [dict(pred_instances=dummy_pred, img_id=0, ori_shape=(640, 640))])
- eval_results = lvis_metric.evaluate(size=1)
- target = {
- 'lvis/bbox_AP': 1.0,
- 'lvis/bbox_AP50': 1.0,
- 'lvis/bbox_AP75': 1.0,
- 'lvis/bbox_APs': 1.0,
- 'lvis/bbox_APm': 1.0,
- 'lvis/bbox_APl': 1.0,
- 'lvis/bbox_APr': -1.0,
- 'lvis/bbox_APc': 1.0,
- 'lvis/bbox_APf': 1.0,
- 'lvis/segm_AP': 1.0,
- 'lvis/segm_AP50': 1.0,
- 'lvis/segm_AP75': 1.0,
- 'lvis/segm_APs': 1.0,
- 'lvis/segm_APm': 1.0,
- 'lvis/segm_APl': 1.0,
- 'lvis/segm_APr': -1.0,
- 'lvis/segm_APc': 1.0,
- 'lvis/segm_APf': 1.0
- }
- self.assertDictEqual(eval_results, target)
- self.assertTrue(
- osp.isfile(osp.join(self.tmp_dir.name, 'test.bbox.json')))
- self.assertTrue(
- osp.isfile(osp.join(self.tmp_dir.name, 'test.segm.json')))
- # test invalid custom metric_items
- with self.assertRaisesRegex(
- KeyError,
- "metric should be one of 'bbox', 'segm', 'proposal', "
- "'proposal_fast', but got invalid."):
- lvis_metric = LVISMetric(
- ann_file=fake_json_file, metric=['invalid'])
- lvis_metric.evaluate(size=1)
- # test custom metric_items
- lvis_metric = LVISMetric(ann_file=fake_json_file, metric_items=['APm'])
- lvis_metric.dataset_meta = dict(
- classes=['aerosol_can', 'air_conditioner'])
- lvis_metric.process(
- {},
- [dict(pred_instances=dummy_pred, img_id=0, ori_shape=(640, 640))])
- eval_results = lvis_metric.evaluate(size=1)
- target = {
- 'lvis/bbox_APm': 1.0,
- }
- self.assertDictEqual(eval_results, target)
- @unittest.skipIf(lvis is None, 'lvis is not installed.')
- def test_classwise_evaluate(self):
- # create dummy data
- fake_json_file = osp.join(self.tmp_dir.name, 'fake_data.json')
- self._create_dummy_lvis_json(fake_json_file)
- dummy_pred = self._create_dummy_results()
- # test single lvis dataset evaluation
- lvis_metric = LVISMetric(
- ann_file=fake_json_file, metric='bbox', classwise=True)
- lvis_metric.dataset_meta = dict(
- classes=['aerosol_can', 'air_conditioner'])
- lvis_metric.process(
- {},
- [dict(pred_instances=dummy_pred, img_id=0, ori_shape=(640, 640))])
- eval_results = lvis_metric.evaluate(size=1)
- target = {
- 'lvis/bbox_AP': 1.0,
- 'lvis/bbox_AP50': 1.0,
- 'lvis/bbox_AP75': 1.0,
- 'lvis/bbox_APs': 1.0,
- 'lvis/bbox_APm': 1.0,
- 'lvis/bbox_APl': 1.0,
- 'lvis/bbox_APr': -1.0,
- 'lvis/bbox_APc': 1.0,
- 'lvis/bbox_APf': 1.0,
- 'lvis/aerosol_can_precision': 1.0,
- 'lvis/air_conditioner_precision': 1.0,
- }
- self.assertDictEqual(eval_results, target)
- @unittest.skipIf(lvis is None, 'lvis is not installed.')
- def test_manually_set_iou_thrs(self):
- # create dummy data
- fake_json_file = osp.join(self.tmp_dir.name, 'fake_data.json')
- self._create_dummy_lvis_json(fake_json_file)
- # test single lvis dataset evaluation
- lvis_metric = LVISMetric(
- ann_file=fake_json_file, metric='bbox', iou_thrs=[0.3, 0.6])
- lvis_metric.dataset_meta = dict(
- classes=['aerosol_can', 'air_conditioner'])
- self.assertEqual(lvis_metric.iou_thrs, [0.3, 0.6])
- @unittest.skipIf(lvis is None, 'lvis is not installed.')
- def test_fast_eval_recall(self):
- # create dummy data
- fake_json_file = osp.join(self.tmp_dir.name, 'fake_data.json')
- self._create_dummy_lvis_json(fake_json_file)
- dummy_pred = self._create_dummy_results()
- # test default proposal nums
- lvis_metric = LVISMetric(
- ann_file=fake_json_file, metric='proposal_fast')
- lvis_metric.dataset_meta = dict(
- classes=['aerosol_can', 'air_conditioner'])
- lvis_metric.process(
- {},
- [dict(pred_instances=dummy_pred, img_id=0, ori_shape=(640, 640))])
- eval_results = lvis_metric.evaluate(size=1)
- target = {'lvis/AR@100': 1.0, 'lvis/AR@300': 1.0, 'lvis/AR@1000': 1.0}
- self.assertDictEqual(eval_results, target)
- # test manually set proposal nums
- lvis_metric = LVISMetric(
- ann_file=fake_json_file,
- metric='proposal_fast',
- proposal_nums=(2, 4))
- lvis_metric.dataset_meta = dict(
- classes=['aerosol_can', 'air_conditioner'])
- lvis_metric.process(
- {},
- [dict(pred_instances=dummy_pred, img_id=0, ori_shape=(640, 640))])
- eval_results = lvis_metric.evaluate(size=1)
- target = {'lvis/AR@2': 0.5, 'lvis/AR@4': 1.0}
- self.assertDictEqual(eval_results, target)
- @unittest.skipIf(lvis is None, 'lvis is not installed.')
- def test_evaluate_proposal(self):
- # create dummy data
- fake_json_file = osp.join(self.tmp_dir.name, 'fake_data.json')
- self._create_dummy_lvis_json(fake_json_file)
- dummy_pred = self._create_dummy_results()
- lvis_metric = LVISMetric(ann_file=fake_json_file, metric='proposal')
- lvis_metric.dataset_meta = dict(
- classes=['aerosol_can', 'air_conditioner'])
- lvis_metric.process(
- {},
- [dict(pred_instances=dummy_pred, img_id=0, ori_shape=(640, 640))])
- eval_results = lvis_metric.evaluate(size=1)
- target = {
- 'lvis/AR@300': 1.0,
- 'lvis/ARs@300': 1.0,
- 'lvis/ARm@300': 1.0,
- 'lvis/ARl@300': 1.0
- }
- self.assertDictEqual(eval_results, target)
- @unittest.skipIf(lvis is None, 'lvis is not installed.')
- def test_empty_results(self):
- # create dummy data
- fake_json_file = osp.join(self.tmp_dir.name, 'fake_data.json')
- self._create_dummy_lvis_json(fake_json_file)
- lvis_metric = LVISMetric(ann_file=fake_json_file, metric='bbox')
- lvis_metric.dataset_meta = dict(
- classes=['aerosol_can', 'air_conditioner'])
- bboxes = np.zeros((0, 4))
- labels = np.array([])
- scores = np.array([])
- dummy_mask = np.zeros((0, 10, 10), dtype=np.uint8)
- empty_pred = dict(
- bboxes=torch.from_numpy(bboxes),
- scores=torch.from_numpy(scores),
- labels=torch.from_numpy(labels),
- masks=torch.from_numpy(dummy_mask))
- lvis_metric.process(
- {},
- [dict(pred_instances=empty_pred, img_id=0, ori_shape=(640, 640))])
- # lvis api Index error will be caught
- lvis_metric.evaluate(size=1)
- @unittest.skipIf(lvis is None, 'lvis is not installed.')
- def test_format_only(self):
- # create dummy data
- fake_json_file = osp.join(self.tmp_dir.name, 'fake_data.json')
- self._create_dummy_lvis_json(fake_json_file)
- dummy_pred = self._create_dummy_results()
- with self.assertRaises(AssertionError):
- LVISMetric(
- ann_file=fake_json_file,
- classwise=False,
- format_only=True,
- outfile_prefix=None)
- lvis_metric = LVISMetric(
- ann_file=fake_json_file,
- metric='bbox',
- classwise=False,
- format_only=True,
- outfile_prefix=f'{self.tmp_dir.name}/test')
- lvis_metric.dataset_meta = dict(
- classes=['aerosol_can', 'air_conditioner'])
- lvis_metric.process(
- {},
- [dict(pred_instances=dummy_pred, img_id=0, ori_shape=(640, 640))])
- eval_results = lvis_metric.evaluate(size=1)
- self.assertDictEqual(eval_results, dict())
- self.assertTrue(osp.exists(f'{self.tmp_dir.name}/test.bbox.json'))
|