123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401 |
- import os.path as osp
- import tempfile
- from unittest import TestCase
- import numpy as np
- import pycocotools.mask as mask_util
- import torch
- from mmengine.fileio import dump
- from mmdet.evaluation import CocoMetric
- class TestCocoMetric(TestCase):
- def _create_dummy_coco_json(self, json_name):
- dummy_mask = np.zeros((10, 10), order='F', dtype=np.uint8)
- dummy_mask[:5, :5] = 1
- rle_mask = mask_util.encode(dummy_mask)
- rle_mask['counts'] = rle_mask['counts'].decode('utf-8')
- image = {
- 'id': 0,
- 'width': 640,
- 'height': 640,
- 'file_name': 'fake_name.jpg',
- }
- annotation_1 = {
- 'id': 1,
- 'image_id': 0,
- 'category_id': 0,
- 'area': 400,
- 'bbox': [50, 60, 20, 20],
- 'iscrowd': 0,
- 'segmentation': rle_mask,
- }
- annotation_2 = {
- 'id': 2,
- 'image_id': 0,
- 'category_id': 0,
- 'area': 900,
- 'bbox': [100, 120, 30, 30],
- 'iscrowd': 0,
- 'segmentation': rle_mask,
- }
- annotation_3 = {
- 'id': 3,
- 'image_id': 0,
- 'category_id': 1,
- 'area': 1600,
- 'bbox': [150, 160, 40, 40],
- 'iscrowd': 0,
- 'segmentation': rle_mask,
- }
- annotation_4 = {
- 'id': 4,
- 'image_id': 0,
- 'category_id': 0,
- 'area': 10000,
- 'bbox': [250, 260, 100, 100],
- 'iscrowd': 0,
- 'segmentation': rle_mask,
- }
- categories = [
- {
- 'id': 0,
- 'name': 'car',
- 'supercategory': 'car',
- },
- {
- 'id': 1,
- 'name': 'bicycle',
- 'supercategory': 'bicycle',
- },
- ]
- fake_json = {
- 'images': [image],
- 'annotations':
- [annotation_1, annotation_2, annotation_3, annotation_4],
- 'categories': categories
- }
- dump(fake_json, json_name)
- def _create_dummy_results(self):
- bboxes = np.array([[50, 60, 70, 80], [100, 120, 130, 150],
- [150, 160, 190, 200], [250, 260, 350, 360]])
- scores = np.array([1.0, 0.98, 0.96, 0.95])
- labels = np.array([0, 0, 1, 0])
- dummy_mask = np.zeros((4, 10, 10), dtype=np.uint8)
- dummy_mask[:, :5, :5] = 1
- return dict(
- bboxes=torch.from_numpy(bboxes),
- scores=torch.from_numpy(scores),
- labels=torch.from_numpy(labels),
- masks=torch.from_numpy(dummy_mask))
- def setUp(self):
- self.tmp_dir = tempfile.TemporaryDirectory()
- def tearDown(self):
- self.tmp_dir.cleanup()
- def test_init(self):
- fake_json_file = osp.join(self.tmp_dir.name, 'fake_data.json')
- self._create_dummy_coco_json(fake_json_file)
- with self.assertRaisesRegex(KeyError, 'metric should be one of'):
- CocoMetric(ann_file=fake_json_file, metric='unknown')
- def test_evaluate(self):
- # create dummy data
- fake_json_file = osp.join(self.tmp_dir.name, 'fake_data.json')
- self._create_dummy_coco_json(fake_json_file)
- dummy_pred = self._create_dummy_results()
- # test single coco dataset evaluation
- coco_metric = CocoMetric(
- ann_file=fake_json_file,
- classwise=False,
- outfile_prefix=f'{self.tmp_dir.name}/test')
- coco_metric.dataset_meta = dict(classes=['car', 'bicycle'])
- coco_metric.process(
- {},
- [dict(pred_instances=dummy_pred, img_id=0, ori_shape=(640, 640))])
- eval_results = coco_metric.evaluate(size=1)
- target = {
- 'coco/bbox_mAP': 1.0,
- 'coco/bbox_mAP_50': 1.0,
- 'coco/bbox_mAP_75': 1.0,
- 'coco/bbox_mAP_s': 1.0,
- 'coco/bbox_mAP_m': 1.0,
- 'coco/bbox_mAP_l': 1.0,
- }
- self.assertDictEqual(eval_results, target)
- self.assertTrue(
- osp.isfile(osp.join(self.tmp_dir.name, 'test.bbox.json')))
- # test box and segm coco dataset evaluation
- coco_metric = CocoMetric(
- ann_file=fake_json_file,
- metric=['bbox', 'segm'],
- classwise=False,
- outfile_prefix=f'{self.tmp_dir.name}/test')
- coco_metric.dataset_meta = dict(classes=['car', 'bicycle'])
- coco_metric.process(
- {},
- [dict(pred_instances=dummy_pred, img_id=0, ori_shape=(640, 640))])
- eval_results = coco_metric.evaluate(size=1)
- target = {
- 'coco/bbox_mAP': 1.0,
- 'coco/bbox_mAP_50': 1.0,
- 'coco/bbox_mAP_75': 1.0,
- 'coco/bbox_mAP_s': 1.0,
- 'coco/bbox_mAP_m': 1.0,
- 'coco/bbox_mAP_l': 1.0,
- 'coco/segm_mAP': 1.0,
- 'coco/segm_mAP_50': 1.0,
- 'coco/segm_mAP_75': 1.0,
- 'coco/segm_mAP_s': 1.0,
- 'coco/segm_mAP_m': 1.0,
- 'coco/segm_mAP_l': 1.0,
- }
- self.assertDictEqual(eval_results, target)
- self.assertTrue(
- osp.isfile(osp.join(self.tmp_dir.name, 'test.bbox.json')))
- self.assertTrue(
- osp.isfile(osp.join(self.tmp_dir.name, 'test.segm.json')))
- # test invalid custom metric_items
- with self.assertRaisesRegex(KeyError,
- 'metric item "invalid" is not supported'):
- coco_metric = CocoMetric(
- ann_file=fake_json_file, metric_items=['invalid'])
- coco_metric.dataset_meta = dict(classes=['car', 'bicycle'])
- coco_metric.process({}, [
- dict(
- pred_instances=dummy_pred, img_id=0, ori_shape=(640, 640))
- ])
- coco_metric.evaluate(size=1)
- # test custom metric_items
- coco_metric = CocoMetric(
- ann_file=fake_json_file, metric_items=['mAP_m'])
- coco_metric.dataset_meta = dict(classes=['car', 'bicycle'])
- coco_metric.process(
- {},
- [dict(pred_instances=dummy_pred, img_id=0, ori_shape=(640, 640))])
- eval_results = coco_metric.evaluate(size=1)
- target = {
- 'coco/bbox_mAP_m': 1.0,
- }
- self.assertDictEqual(eval_results, target)
- def test_classwise_evaluate(self):
- # create dummy data
- fake_json_file = osp.join(self.tmp_dir.name, 'fake_data.json')
- self._create_dummy_coco_json(fake_json_file)
- dummy_pred = self._create_dummy_results()
- # test single coco dataset evaluation
- coco_metric = CocoMetric(
- ann_file=fake_json_file, metric='bbox', classwise=True)
- # coco_metric1 = CocoMetric(
- # ann_file=fake_json_file, metric='bbox', classwise=True)
- coco_metric.dataset_meta = dict(classes=['car', 'bicycle'])
- coco_metric.process(
- {},
- [dict(pred_instances=dummy_pred, img_id=0, ori_shape=(640, 640))])
- eval_results = coco_metric.evaluate(size=1)
- target = {
- 'coco/bbox_mAP': 1.0,
- 'coco/bbox_mAP_50': 1.0,
- 'coco/bbox_mAP_75': 1.0,
- 'coco/bbox_mAP_s': 1.0,
- 'coco/bbox_mAP_m': 1.0,
- 'coco/bbox_mAP_l': 1.0,
- 'coco/car_precision': 1.0,
- 'coco/bicycle_precision': 1.0,
- }
- self.assertDictEqual(eval_results, target)
- def test_manually_set_iou_thrs(self):
- # create dummy data
- fake_json_file = osp.join(self.tmp_dir.name, 'fake_data.json')
- self._create_dummy_coco_json(fake_json_file)
- # test single coco dataset evaluation
- coco_metric = CocoMetric(
- ann_file=fake_json_file, metric='bbox', iou_thrs=[0.3, 0.6])
- coco_metric.dataset_meta = dict(classes=['car', 'bicycle'])
- self.assertEqual(coco_metric.iou_thrs, [0.3, 0.6])
- def test_fast_eval_recall(self):
- # create dummy data
- fake_json_file = osp.join(self.tmp_dir.name, 'fake_data.json')
- self._create_dummy_coco_json(fake_json_file)
- dummy_pred = self._create_dummy_results()
- # test default proposal nums
- coco_metric = CocoMetric(
- ann_file=fake_json_file, metric='proposal_fast')
- coco_metric.dataset_meta = dict(classes=['car', 'bicycle'])
- coco_metric.process(
- {},
- [dict(pred_instances=dummy_pred, img_id=0, ori_shape=(640, 640))])
- eval_results = coco_metric.evaluate(size=1)
- target = {'coco/AR@100': 1.0, 'coco/AR@300': 1.0, 'coco/AR@1000': 1.0}
- self.assertDictEqual(eval_results, target)
- # test manually set proposal nums
- coco_metric = CocoMetric(
- ann_file=fake_json_file,
- metric='proposal_fast',
- proposal_nums=(2, 4))
- coco_metric.dataset_meta = dict(classes=['car', 'bicycle'])
- coco_metric.process(
- {},
- [dict(pred_instances=dummy_pred, img_id=0, ori_shape=(640, 640))])
- eval_results = coco_metric.evaluate(size=1)
- target = {'coco/AR@2': 0.5, 'coco/AR@4': 1.0}
- self.assertDictEqual(eval_results, target)
- def test_evaluate_proposal(self):
- # create dummy data
- fake_json_file = osp.join(self.tmp_dir.name, 'fake_data.json')
- self._create_dummy_coco_json(fake_json_file)
- dummy_pred = self._create_dummy_results()
- coco_metric = CocoMetric(ann_file=fake_json_file, metric='proposal')
- coco_metric.dataset_meta = dict(classes=['car', 'bicycle'])
- coco_metric.process(
- {},
- [dict(pred_instances=dummy_pred, img_id=0, ori_shape=(640, 640))])
- eval_results = coco_metric.evaluate(size=1)
- print(eval_results)
- target = {
- 'coco/AR@100': 1,
- 'coco/AR@300': 1.0,
- 'coco/AR@1000': 1.0,
- 'coco/AR_s@1000': 1.0,
- 'coco/AR_m@1000': 1.0,
- 'coco/AR_l@1000': 1.0
- }
- self.assertDictEqual(eval_results, target)
- def test_empty_results(self):
- # create dummy data
- fake_json_file = osp.join(self.tmp_dir.name, 'fake_data.json')
- self._create_dummy_coco_json(fake_json_file)
- coco_metric = CocoMetric(ann_file=fake_json_file, metric='bbox')
- coco_metric.dataset_meta = dict(classes=['car', 'bicycle'])
- bboxes = np.zeros((0, 4))
- labels = np.array([])
- scores = np.array([])
- dummy_mask = np.zeros((0, 10, 10), dtype=np.uint8)
- empty_pred = dict(
- bboxes=torch.from_numpy(bboxes),
- scores=torch.from_numpy(scores),
- labels=torch.from_numpy(labels),
- masks=torch.from_numpy(dummy_mask))
- coco_metric.process(
- {},
- [dict(pred_instances=empty_pred, img_id=0, ori_shape=(640, 640))])
- # coco api Index error will be caught
- coco_metric.evaluate(size=1)
- def test_evaluate_without_json(self):
- dummy_pred = self._create_dummy_results()
- dummy_mask = np.zeros((10, 10), order='F', dtype=np.uint8)
- dummy_mask[:5, :5] = 1
- rle_mask = mask_util.encode(dummy_mask)
- rle_mask['counts'] = rle_mask['counts'].decode('utf-8')
- instances = [{
- 'bbox_label': 0,
- 'bbox': [50, 60, 70, 80],
- 'ignore_flag': 0,
- 'mask': rle_mask,
- }, {
- 'bbox_label': 0,
- 'bbox': [100, 120, 130, 150],
- 'ignore_flag': 0,
- 'mask': rle_mask,
- }, {
- 'bbox_label': 1,
- 'bbox': [150, 160, 190, 200],
- 'ignore_flag': 0,
- 'mask': rle_mask,
- }, {
- 'bbox_label': 0,
- 'bbox': [250, 260, 350, 360],
- 'ignore_flag': 0,
- 'mask': rle_mask,
- }]
- coco_metric = CocoMetric(
- ann_file=None,
- metric=['bbox', 'segm'],
- classwise=False,
- outfile_prefix=f'{self.tmp_dir.name}/test')
- coco_metric.dataset_meta = dict(classes=['car', 'bicycle'])
- coco_metric.process({}, [
- dict(
- pred_instances=dummy_pred,
- img_id=0,
- ori_shape=(640, 640),
- instances=instances)
- ])
- eval_results = coco_metric.evaluate(size=1)
- print(eval_results)
- target = {
- 'coco/bbox_mAP': 1.0,
- 'coco/bbox_mAP_50': 1.0,
- 'coco/bbox_mAP_75': 1.0,
- 'coco/bbox_mAP_s': 1.0,
- 'coco/bbox_mAP_m': 1.0,
- 'coco/bbox_mAP_l': 1.0,
- 'coco/segm_mAP': 1.0,
- 'coco/segm_mAP_50': 1.0,
- 'coco/segm_mAP_75': 1.0,
- 'coco/segm_mAP_s': 1.0,
- 'coco/segm_mAP_m': 1.0,
- 'coco/segm_mAP_l': 1.0,
- }
- self.assertDictEqual(eval_results, target)
- self.assertTrue(
- osp.isfile(osp.join(self.tmp_dir.name, 'test.bbox.json')))
- self.assertTrue(
- osp.isfile(osp.join(self.tmp_dir.name, 'test.segm.json')))
- self.assertTrue(
- osp.isfile(osp.join(self.tmp_dir.name, 'test.gt.json')))
- def test_format_only(self):
- # create dummy data
- fake_json_file = osp.join(self.tmp_dir.name, 'fake_data.json')
- self._create_dummy_coco_json(fake_json_file)
- dummy_pred = self._create_dummy_results()
- with self.assertRaises(AssertionError):
- CocoMetric(
- ann_file=fake_json_file,
- classwise=False,
- format_only=True,
- outfile_prefix=None)
- coco_metric = CocoMetric(
- ann_file=fake_json_file,
- metric='bbox',
- classwise=False,
- format_only=True,
- outfile_prefix=f'{self.tmp_dir.name}/test')
- coco_metric.dataset_meta = dict(classes=['car', 'bicycle'])
- coco_metric.process(
- {},
- [dict(pred_instances=dummy_pred, img_id=0, ori_shape=(640, 640))])
- eval_results = coco_metric.evaluate(size=1)
- self.assertDictEqual(eval_results, dict())
- self.assertTrue(osp.exists(f'{self.tmp_dir.name}/test.bbox.json'))
|