123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298 |
- _base_ = 'mmdet::common/lsj-200e_coco-detection.py'
- custom_imports = dict(
- imports=['projects.Detic.detic'], allow_failed_imports=False)
- image_size = (1024, 1024)
- batch_augments = [dict(type='BatchFixedSizePad', size=image_size)]
- cls_layer = dict(
- type='ZeroShotClassifier',
- zs_weight_path='rand',
- zs_weight_dim=512,
- use_bias=0.0,
- norm_weight=True,
- norm_temperature=50.0)
- reg_layer = [
- dict(type='Linear', in_features=1024, out_features=1024),
- dict(type='ReLU', inplace=True),
- dict(type='Linear', in_features=1024, out_features=4)
- ]
- num_classes = 22047
- model = dict(
- type='CascadeRCNN',
- data_preprocessor=dict(
- type='DetDataPreprocessor',
- mean=[123.675, 116.28, 103.53],
- std=[58.395, 57.12, 57.375],
- bgr_to_rgb=True,
- pad_size_divisor=32,
- batch_augments=batch_augments),
- backbone=dict(
- type='SwinTransformer',
- embed_dims=128,
- depths=[2, 2, 18, 2],
- num_heads=[4, 8, 16, 32],
- window_size=7,
- mlp_ratio=4,
- qkv_bias=True,
- qk_scale=None,
- drop_rate=0.,
- attn_drop_rate=0.,
- drop_path_rate=0.3,
- patch_norm=True,
- out_indices=(1, 2, 3),
- with_cp=False),
- neck=dict(
- type='FPN',
- in_channels=[256, 512, 1024],
- out_channels=256,
- start_level=0,
- add_extra_convs='on_output',
- num_outs=5,
- init_cfg=dict(type='Caffe2Xavier', layer='Conv2d'),
- relu_before_extra_convs=True),
- rpn_head=dict(
- type='CenterNetRPNHead',
- num_classes=1,
- in_channels=256,
- stacked_convs=4,
- feat_channels=256,
- strides=[8, 16, 32, 64, 128],
- conv_bias=True,
- norm_cfg=dict(type='GN', num_groups=32, requires_grad=True),
- loss_cls=dict(
- type='GaussianFocalLoss',
- pos_weight=0.25,
- neg_weight=0.75,
- loss_weight=1.0),
- loss_bbox=dict(type='GIoULoss', loss_weight=2.0),
- ),
- roi_head=dict(
- type='DeticRoIHead',
- num_stages=3,
- stage_loss_weights=[1, 0.5, 0.25],
- bbox_roi_extractor=dict(
- type='SingleRoIExtractor',
- roi_layer=dict(
- type='RoIAlign',
- output_size=7,
- sampling_ratio=0,
- use_torchvision=True),
- out_channels=256,
- featmap_strides=[8, 16, 32],
- # approximately equal to
- # canonical_box_size=224, canonical_level=4 in D2
- finest_scale=112),
- bbox_head=[
- dict(
- type='DeticBBoxHead',
- in_channels=256,
- fc_out_channels=1024,
- roi_feat_size=7,
- num_classes=num_classes,
- cls_predictor_cfg=cls_layer,
- reg_predictor_cfg=reg_layer,
- bbox_coder=dict(
- type='DeltaXYWHBBoxCoder',
- target_means=[0., 0., 0., 0.],
- target_stds=[0.1, 0.1, 0.2, 0.2]),
- reg_class_agnostic=True,
- loss_cls=dict(
- type='CrossEntropyLoss', use_sigmoid=True,
- loss_weight=1.0),
- loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
- loss_weight=1.0)),
- dict(
- type='DeticBBoxHead',
- in_channels=256,
- fc_out_channels=1024,
- roi_feat_size=7,
- num_classes=num_classes,
- cls_predictor_cfg=cls_layer,
- reg_predictor_cfg=reg_layer,
- bbox_coder=dict(
- type='DeltaXYWHBBoxCoder',
- target_means=[0., 0., 0., 0.],
- target_stds=[0.05, 0.05, 0.1, 0.1]),
- reg_class_agnostic=True,
- loss_cls=dict(
- type='CrossEntropyLoss', use_sigmoid=True,
- loss_weight=1.0),
- loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
- loss_weight=1.0)),
- dict(
- type='DeticBBoxHead',
- in_channels=256,
- fc_out_channels=1024,
- roi_feat_size=7,
- num_classes=num_classes,
- cls_predictor_cfg=cls_layer,
- reg_predictor_cfg=reg_layer,
- bbox_coder=dict(
- type='DeltaXYWHBBoxCoder',
- target_means=[0., 0., 0., 0.],
- target_stds=[0.033, 0.033, 0.067, 0.067]),
- reg_class_agnostic=True,
- loss_cls=dict(
- type='CrossEntropyLoss', use_sigmoid=True,
- loss_weight=1.0),
- loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))
- ],
- mask_roi_extractor=dict(
- type='SingleRoIExtractor',
- roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0),
- out_channels=256,
- featmap_strides=[8, 16, 32],
- # approximately equal to
- # canonical_box_size=224, canonical_level=4 in D2
- finest_scale=112),
- mask_head=dict(
- type='FCNMaskHead',
- num_convs=4,
- in_channels=256,
- conv_out_channels=256,
- class_agnostic=True,
- num_classes=num_classes,
- loss_mask=dict(
- type='CrossEntropyLoss', use_mask=True, loss_weight=1.0))),
- # model training and testing settings
- train_cfg=dict(
- rpn=dict(
- assigner=dict(
- type='MaxIoUAssigner',
- pos_iou_thr=0.7,
- neg_iou_thr=0.3,
- min_pos_iou=0.3,
- match_low_quality=True,
- ignore_iof_thr=-1),
- sampler=dict(
- type='RandomSampler',
- num=256,
- pos_fraction=0.5,
- neg_pos_ub=-1,
- add_gt_as_proposals=False),
- allowed_border=0,
- pos_weight=-1,
- debug=False),
- rpn_proposal=dict(
- nms_pre=2000,
- max_per_img=2000,
- nms=dict(type='nms', iou_threshold=0.7),
- min_bbox_size=0),
- rcnn=[
- dict(
- assigner=dict(
- type='MaxIoUAssigner',
- pos_iou_thr=0.6,
- neg_iou_thr=0.6,
- min_pos_iou=0.6,
- match_low_quality=False,
- ignore_iof_thr=-1),
- sampler=dict(
- type='RandomSampler',
- num=512,
- pos_fraction=0.25,
- neg_pos_ub=-1,
- add_gt_as_proposals=True),
- mask_size=28,
- pos_weight=-1,
- debug=False),
- dict(
- assigner=dict(
- type='MaxIoUAssigner',
- pos_iou_thr=0.7,
- neg_iou_thr=0.7,
- min_pos_iou=0.7,
- match_low_quality=False,
- ignore_iof_thr=-1),
- sampler=dict(
- type='RandomSampler',
- num=512,
- pos_fraction=0.25,
- neg_pos_ub=-1,
- add_gt_as_proposals=True),
- mask_size=28,
- pos_weight=-1,
- debug=False),
- dict(
- assigner=dict(
- type='MaxIoUAssigner',
- pos_iou_thr=0.8,
- neg_iou_thr=0.8,
- min_pos_iou=0.8,
- match_low_quality=False,
- ignore_iof_thr=-1),
- sampler=dict(
- type='RandomSampler',
- num=512,
- pos_fraction=0.25,
- neg_pos_ub=-1,
- add_gt_as_proposals=True),
- mask_size=28,
- pos_weight=-1,
- debug=False)
- ]),
- test_cfg=dict(
- rpn=dict(
- score_thr=0.0001,
- nms_pre=1000,
- max_per_img=256,
- nms=dict(type='nms', iou_threshold=0.9),
- min_bbox_size=0),
- rcnn=dict(
- score_thr=0.02,
- nms=dict(type='nms', iou_threshold=0.5),
- max_per_img=300,
- mask_thr_binary=0.5)))
- backend = 'pillow'
- test_pipeline = [
- dict(
- type='LoadImageFromFile',
- backend_args=_base_.backend_args,
- imdecode_backend=backend),
- dict(type='Resize', scale=(1333, 800), keep_ratio=True, backend=backend),
- dict(
- type='LoadAnnotations',
- with_bbox=True,
- with_mask=True,
- poly2mask=False),
- dict(
- type='PackDetInputs',
- meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
- 'scale_factor'))
- ]
- train_dataloader = dict(batch_size=8, num_workers=4)
- val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
- test_dataloader = val_dataloader
- # Enable automatic-mixed-precision training with AmpOptimWrapper.
- optim_wrapper = dict(
- type='AmpOptimWrapper',
- optimizer=dict(
- type='SGD', lr=0.01 * 4, momentum=0.9, weight_decay=0.00004),
- paramwise_cfg=dict(norm_decay_mult=0.))
- param_scheduler = [
- dict(
- type='LinearLR',
- start_factor=0.00025,
- by_epoch=False,
- begin=0,
- end=4000),
- dict(
- type='MultiStepLR',
- begin=0,
- end=25,
- by_epoch=True,
- milestones=[22, 24],
- gamma=0.1)
- ]
- # NOTE: `auto_scale_lr` is for automatically scaling LR,
- # USER SHOULD NOT CHANGE ITS VALUES.
- # base_batch_size = (8 GPUs) x (8 samples per GPU)
- auto_scale_lr = dict(base_batch_size=64)
|