123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240 |
- # Copyright (c) OpenMMLab. All rights reserved.
- import warnings
- import numpy as np
- import torch
- from torch import Tensor
- from mmdet.structures.bbox import BaseBoxes, cat_boxes
- from mmdet.utils import util_mixins
- from mmdet.utils.util_random import ensure_rng
- from ..assigners import AssignResult
- def random_boxes(num=1, scale=1, rng=None):
- """Simple version of ``kwimage.Boxes.random``
- Returns:
- Tensor: shape (n, 4) in x1, y1, x2, y2 format.
- References:
- https://gitlab.kitware.com/computer-vision/kwimage/blob/master/kwimage/structs/boxes.py#L1390
- Example:
- >>> num = 3
- >>> scale = 512
- >>> rng = 0
- >>> boxes = random_boxes(num, scale, rng)
- >>> print(boxes)
- tensor([[280.9925, 278.9802, 308.6148, 366.1769],
- [216.9113, 330.6978, 224.0446, 456.5878],
- [405.3632, 196.3221, 493.3953, 270.7942]])
- """
- rng = ensure_rng(rng)
- tlbr = rng.rand(num, 4).astype(np.float32)
- tl_x = np.minimum(tlbr[:, 0], tlbr[:, 2])
- tl_y = np.minimum(tlbr[:, 1], tlbr[:, 3])
- br_x = np.maximum(tlbr[:, 0], tlbr[:, 2])
- br_y = np.maximum(tlbr[:, 1], tlbr[:, 3])
- tlbr[:, 0] = tl_x * scale
- tlbr[:, 1] = tl_y * scale
- tlbr[:, 2] = br_x * scale
- tlbr[:, 3] = br_y * scale
- boxes = torch.from_numpy(tlbr)
- return boxes
- class SamplingResult(util_mixins.NiceRepr):
- """Bbox sampling result.
- Args:
- pos_inds (Tensor): Indices of positive samples.
- neg_inds (Tensor): Indices of negative samples.
- priors (Tensor): The priors can be anchors or points,
- or the bboxes predicted by the previous stage.
- gt_bboxes (Tensor): Ground truth of bboxes.
- assign_result (:obj:`AssignResult`): Assigning results.
- gt_flags (Tensor): The Ground truth flags.
- avg_factor_with_neg (bool): If True, ``avg_factor`` equal to
- the number of total priors; Otherwise, it is the number of
- positive priors. Defaults to True.
- Example:
- >>> # xdoctest: +IGNORE_WANT
- >>> from mmdet.models.task_modules.samplers.sampling_result import * # NOQA
- >>> self = SamplingResult.random(rng=10)
- >>> print(f'self = {self}')
- self = <SamplingResult({
- 'neg_inds': tensor([1, 2, 3, 5, 6, 7, 8,
- 9, 10, 11, 12, 13]),
- 'neg_priors': torch.Size([12, 4]),
- 'num_gts': 1,
- 'num_neg': 12,
- 'num_pos': 1,
- 'avg_factor': 13,
- 'pos_assigned_gt_inds': tensor([0]),
- 'pos_inds': tensor([0]),
- 'pos_is_gt': tensor([1], dtype=torch.uint8),
- 'pos_priors': torch.Size([1, 4])
- })>
- """
- def __init__(self,
- pos_inds: Tensor,
- neg_inds: Tensor,
- priors: Tensor,
- gt_bboxes: Tensor,
- assign_result: AssignResult,
- gt_flags: Tensor,
- avg_factor_with_neg: bool = True) -> None:
- self.pos_inds = pos_inds
- self.neg_inds = neg_inds
- self.num_pos = max(pos_inds.numel(), 1)
- self.num_neg = max(neg_inds.numel(), 1)
- self.avg_factor_with_neg = avg_factor_with_neg
- self.avg_factor = self.num_pos + self.num_neg \
- if avg_factor_with_neg else self.num_pos
- self.pos_priors = priors[pos_inds]
- self.neg_priors = priors[neg_inds]
- self.pos_is_gt = gt_flags[pos_inds]
- self.num_gts = gt_bboxes.shape[0]
- self.pos_assigned_gt_inds = assign_result.gt_inds[pos_inds] - 1
- self.pos_gt_labels = assign_result.labels[pos_inds]
- box_dim = gt_bboxes.box_dim if isinstance(gt_bboxes, BaseBoxes) else 4
- if gt_bboxes.numel() == 0:
- # hack for index error case
- assert self.pos_assigned_gt_inds.numel() == 0
- self.pos_gt_bboxes = gt_bboxes.view(-1, box_dim)
- else:
- if len(gt_bboxes.shape) < 2:
- gt_bboxes = gt_bboxes.view(-1, box_dim)
- self.pos_gt_bboxes = gt_bboxes[self.pos_assigned_gt_inds.long()]
- @property
- def priors(self):
- """torch.Tensor: concatenated positive and negative priors"""
- return cat_boxes([self.pos_priors, self.neg_priors])
- @property
- def bboxes(self):
- """torch.Tensor: concatenated positive and negative boxes"""
- warnings.warn('DeprecationWarning: bboxes is deprecated, '
- 'please use "priors" instead')
- return self.priors
- @property
- def pos_bboxes(self):
- warnings.warn('DeprecationWarning: pos_bboxes is deprecated, '
- 'please use "pos_priors" instead')
- return self.pos_priors
- @property
- def neg_bboxes(self):
- warnings.warn('DeprecationWarning: neg_bboxes is deprecated, '
- 'please use "neg_priors" instead')
- return self.neg_priors
- def to(self, device):
- """Change the device of the data inplace.
- Example:
- >>> self = SamplingResult.random()
- >>> print(f'self = {self.to(None)}')
- >>> # xdoctest: +REQUIRES(--gpu)
- >>> print(f'self = {self.to(0)}')
- """
- _dict = self.__dict__
- for key, value in _dict.items():
- if isinstance(value, (torch.Tensor, BaseBoxes)):
- _dict[key] = value.to(device)
- return self
- def __nice__(self):
- data = self.info.copy()
- data['pos_priors'] = data.pop('pos_priors').shape
- data['neg_priors'] = data.pop('neg_priors').shape
- parts = [f"'{k}': {v!r}" for k, v in sorted(data.items())]
- body = ' ' + ',\n '.join(parts)
- return '{\n' + body + '\n}'
- @property
- def info(self):
- """Returns a dictionary of info about the object."""
- return {
- 'pos_inds': self.pos_inds,
- 'neg_inds': self.neg_inds,
- 'pos_priors': self.pos_priors,
- 'neg_priors': self.neg_priors,
- 'pos_is_gt': self.pos_is_gt,
- 'num_gts': self.num_gts,
- 'pos_assigned_gt_inds': self.pos_assigned_gt_inds,
- 'num_pos': self.num_pos,
- 'num_neg': self.num_neg,
- 'avg_factor': self.avg_factor
- }
- @classmethod
- def random(cls, rng=None, **kwargs):
- """
- Args:
- rng (None | int | numpy.random.RandomState): seed or state.
- kwargs (keyword arguments):
- - num_preds: Number of predicted boxes.
- - num_gts: Number of true boxes.
- - p_ignore (float): Probability of a predicted box assigned to
- an ignored truth.
- - p_assigned (float): probability of a predicted box not being
- assigned.
- Returns:
- :obj:`SamplingResult`: Randomly generated sampling result.
- Example:
- >>> from mmdet.models.task_modules.samplers.sampling_result import * # NOQA
- >>> self = SamplingResult.random()
- >>> print(self.__dict__)
- """
- from mmengine.structures import InstanceData
- from mmdet.models.task_modules.assigners import AssignResult
- from mmdet.models.task_modules.samplers import RandomSampler
- rng = ensure_rng(rng)
- # make probabilistic?
- num = 32
- pos_fraction = 0.5
- neg_pos_ub = -1
- assign_result = AssignResult.random(rng=rng, **kwargs)
- # Note we could just compute an assignment
- priors = random_boxes(assign_result.num_preds, rng=rng)
- gt_bboxes = random_boxes(assign_result.num_gts, rng=rng)
- gt_labels = torch.randint(
- 0, 5, (assign_result.num_gts, ), dtype=torch.long)
- pred_instances = InstanceData()
- pred_instances.priors = priors
- gt_instances = InstanceData()
- gt_instances.bboxes = gt_bboxes
- gt_instances.labels = gt_labels
- add_gt_as_proposals = True
- sampler = RandomSampler(
- num,
- pos_fraction,
- neg_pos_ub=neg_pos_ub,
- add_gt_as_proposals=add_gt_as_proposals,
- rng=rng)
- self = sampler.sample(
- assign_result=assign_result,
- pred_instances=pred_instances,
- gt_instances=gt_instances)
- return self
|