123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366 |
- # Copyright (c) OpenMMLab. All rights reserved.
- from typing import Optional, Sequence, Tuple, Union
- import numpy as np
- import torch
- import torch.nn.functional as F
- from torch import Tensor
- from mmdet.registry import TASK_UTILS
- from mmdet.structures.bbox import (BaseBoxes, HorizontalBoxes, bbox_rescale,
- get_box_tensor)
- from .base_bbox_coder import BaseBBoxCoder
- @TASK_UTILS.register_module()
- class BucketingBBoxCoder(BaseBBoxCoder):
- """Bucketing BBox Coder for Side-Aware Boundary Localization (SABL).
- Boundary Localization with Bucketing and Bucketing Guided Rescoring
- are implemented here.
- Please refer to https://arxiv.org/abs/1912.04260 for more details.
- Args:
- num_buckets (int): Number of buckets.
- scale_factor (int): Scale factor of proposals to generate buckets.
- offset_topk (int): Topk buckets are used to generate
- bucket fine regression targets. Defaults to 2.
- offset_upperbound (float): Offset upperbound to generate
- bucket fine regression targets.
- To avoid too large offset displacements. Defaults to 1.0.
- cls_ignore_neighbor (bool): Ignore second nearest bucket or Not.
- Defaults to True.
- clip_border (bool, optional): Whether clip the objects outside the
- border of the image. Defaults to True.
- """
- def __init__(self,
- num_buckets: int,
- scale_factor: int,
- offset_topk: int = 2,
- offset_upperbound: float = 1.0,
- cls_ignore_neighbor: bool = True,
- clip_border: bool = True,
- **kwargs) -> None:
- super().__init__(**kwargs)
- self.num_buckets = num_buckets
- self.scale_factor = scale_factor
- self.offset_topk = offset_topk
- self.offset_upperbound = offset_upperbound
- self.cls_ignore_neighbor = cls_ignore_neighbor
- self.clip_border = clip_border
- def encode(self, bboxes: Union[Tensor, BaseBoxes],
- gt_bboxes: Union[Tensor, BaseBoxes]) -> Tuple[Tensor]:
- """Get bucketing estimation and fine regression targets during
- training.
- Args:
- bboxes (torch.Tensor or :obj:`BaseBoxes`): source boxes,
- e.g., object proposals.
- gt_bboxes (torch.Tensor or :obj:`BaseBoxes`): target of the
- transformation, e.g., ground truth boxes.
- Returns:
- encoded_bboxes(tuple[Tensor]): bucketing estimation
- and fine regression targets and weights
- """
- bboxes = get_box_tensor(bboxes)
- gt_bboxes = get_box_tensor(gt_bboxes)
- assert bboxes.size(0) == gt_bboxes.size(0)
- assert bboxes.size(-1) == gt_bboxes.size(-1) == 4
- encoded_bboxes = bbox2bucket(bboxes, gt_bboxes, self.num_buckets,
- self.scale_factor, self.offset_topk,
- self.offset_upperbound,
- self.cls_ignore_neighbor)
- return encoded_bboxes
- def decode(
- self,
- bboxes: Union[Tensor, BaseBoxes],
- pred_bboxes: Tensor,
- max_shape: Optional[Tuple[int]] = None
- ) -> Tuple[Union[Tensor, BaseBoxes], Tensor]:
- """Apply transformation `pred_bboxes` to `boxes`.
- Args:
- boxes (torch.Tensor or :obj:`BaseBoxes`): Basic boxes.
- pred_bboxes (torch.Tensor): Predictions for bucketing estimation
- and fine regression
- max_shape (tuple[int], optional): Maximum shape of boxes.
- Defaults to None.
- Returns:
- Union[torch.Tensor, :obj:`BaseBoxes`]: Decoded boxes.
- """
- bboxes = get_box_tensor(bboxes)
- assert len(pred_bboxes) == 2
- cls_preds, offset_preds = pred_bboxes
- assert cls_preds.size(0) == bboxes.size(0) and offset_preds.size(
- 0) == bboxes.size(0)
- bboxes, loc_confidence = bucket2bbox(bboxes, cls_preds, offset_preds,
- self.num_buckets,
- self.scale_factor, max_shape,
- self.clip_border)
- if self.use_box_type:
- bboxes = HorizontalBoxes(bboxes, clone=False)
- return bboxes, loc_confidence
- def generat_buckets(proposals: Tensor,
- num_buckets: int,
- scale_factor: float = 1.0) -> Tuple[Tensor]:
- """Generate buckets w.r.t bucket number and scale factor of proposals.
- Args:
- proposals (Tensor): Shape (n, 4)
- num_buckets (int): Number of buckets.
- scale_factor (float): Scale factor to rescale proposals.
- Returns:
- tuple[Tensor]: (bucket_w, bucket_h, l_buckets, r_buckets,
- t_buckets, d_buckets)
- - bucket_w: Width of buckets on x-axis. Shape (n, ).
- - bucket_h: Height of buckets on y-axis. Shape (n, ).
- - l_buckets: Left buckets. Shape (n, ceil(side_num/2)).
- - r_buckets: Right buckets. Shape (n, ceil(side_num/2)).
- - t_buckets: Top buckets. Shape (n, ceil(side_num/2)).
- - d_buckets: Down buckets. Shape (n, ceil(side_num/2)).
- """
- proposals = bbox_rescale(proposals, scale_factor)
- # number of buckets in each side
- side_num = int(np.ceil(num_buckets / 2.0))
- pw = proposals[..., 2] - proposals[..., 0]
- ph = proposals[..., 3] - proposals[..., 1]
- px1 = proposals[..., 0]
- py1 = proposals[..., 1]
- px2 = proposals[..., 2]
- py2 = proposals[..., 3]
- bucket_w = pw / num_buckets
- bucket_h = ph / num_buckets
- # left buckets
- l_buckets = px1[:, None] + (0.5 + torch.arange(
- 0, side_num).to(proposals).float())[None, :] * bucket_w[:, None]
- # right buckets
- r_buckets = px2[:, None] - (0.5 + torch.arange(
- 0, side_num).to(proposals).float())[None, :] * bucket_w[:, None]
- # top buckets
- t_buckets = py1[:, None] + (0.5 + torch.arange(
- 0, side_num).to(proposals).float())[None, :] * bucket_h[:, None]
- # down buckets
- d_buckets = py2[:, None] - (0.5 + torch.arange(
- 0, side_num).to(proposals).float())[None, :] * bucket_h[:, None]
- return bucket_w, bucket_h, l_buckets, r_buckets, t_buckets, d_buckets
- def bbox2bucket(proposals: Tensor,
- gt: Tensor,
- num_buckets: int,
- scale_factor: float,
- offset_topk: int = 2,
- offset_upperbound: float = 1.0,
- cls_ignore_neighbor: bool = True) -> Tuple[Tensor]:
- """Generate buckets estimation and fine regression targets.
- Args:
- proposals (Tensor): Shape (n, 4)
- gt (Tensor): Shape (n, 4)
- num_buckets (int): Number of buckets.
- scale_factor (float): Scale factor to rescale proposals.
- offset_topk (int): Topk buckets are used to generate
- bucket fine regression targets. Defaults to 2.
- offset_upperbound (float): Offset allowance to generate
- bucket fine regression targets.
- To avoid too large offset displacements. Defaults to 1.0.
- cls_ignore_neighbor (bool): Ignore second nearest bucket or Not.
- Defaults to True.
- Returns:
- tuple[Tensor]: (offsets, offsets_weights, bucket_labels, cls_weights).
- - offsets: Fine regression targets. \
- Shape (n, num_buckets*2).
- - offsets_weights: Fine regression weights. \
- Shape (n, num_buckets*2).
- - bucket_labels: Bucketing estimation labels. \
- Shape (n, num_buckets*2).
- - cls_weights: Bucketing estimation weights. \
- Shape (n, num_buckets*2).
- """
- assert proposals.size() == gt.size()
- # generate buckets
- proposals = proposals.float()
- gt = gt.float()
- (bucket_w, bucket_h, l_buckets, r_buckets, t_buckets,
- d_buckets) = generat_buckets(proposals, num_buckets, scale_factor)
- gx1 = gt[..., 0]
- gy1 = gt[..., 1]
- gx2 = gt[..., 2]
- gy2 = gt[..., 3]
- # generate offset targets and weights
- # offsets from buckets to gts
- l_offsets = (l_buckets - gx1[:, None]) / bucket_w[:, None]
- r_offsets = (r_buckets - gx2[:, None]) / bucket_w[:, None]
- t_offsets = (t_buckets - gy1[:, None]) / bucket_h[:, None]
- d_offsets = (d_buckets - gy2[:, None]) / bucket_h[:, None]
- # select top-k nearest buckets
- l_topk, l_label = l_offsets.abs().topk(
- offset_topk, dim=1, largest=False, sorted=True)
- r_topk, r_label = r_offsets.abs().topk(
- offset_topk, dim=1, largest=False, sorted=True)
- t_topk, t_label = t_offsets.abs().topk(
- offset_topk, dim=1, largest=False, sorted=True)
- d_topk, d_label = d_offsets.abs().topk(
- offset_topk, dim=1, largest=False, sorted=True)
- offset_l_weights = l_offsets.new_zeros(l_offsets.size())
- offset_r_weights = r_offsets.new_zeros(r_offsets.size())
- offset_t_weights = t_offsets.new_zeros(t_offsets.size())
- offset_d_weights = d_offsets.new_zeros(d_offsets.size())
- inds = torch.arange(0, proposals.size(0)).to(proposals).long()
- # generate offset weights of top-k nearest buckets
- for k in range(offset_topk):
- if k >= 1:
- offset_l_weights[inds, l_label[:,
- k]] = (l_topk[:, k] <
- offset_upperbound).float()
- offset_r_weights[inds, r_label[:,
- k]] = (r_topk[:, k] <
- offset_upperbound).float()
- offset_t_weights[inds, t_label[:,
- k]] = (t_topk[:, k] <
- offset_upperbound).float()
- offset_d_weights[inds, d_label[:,
- k]] = (d_topk[:, k] <
- offset_upperbound).float()
- else:
- offset_l_weights[inds, l_label[:, k]] = 1.0
- offset_r_weights[inds, r_label[:, k]] = 1.0
- offset_t_weights[inds, t_label[:, k]] = 1.0
- offset_d_weights[inds, d_label[:, k]] = 1.0
- offsets = torch.cat([l_offsets, r_offsets, t_offsets, d_offsets], dim=-1)
- offsets_weights = torch.cat([
- offset_l_weights, offset_r_weights, offset_t_weights, offset_d_weights
- ],
- dim=-1)
- # generate bucket labels and weight
- side_num = int(np.ceil(num_buckets / 2.0))
- labels = torch.stack(
- [l_label[:, 0], r_label[:, 0], t_label[:, 0], d_label[:, 0]], dim=-1)
- batch_size = labels.size(0)
- bucket_labels = F.one_hot(labels.view(-1), side_num).view(batch_size,
- -1).float()
- bucket_cls_l_weights = (l_offsets.abs() < 1).float()
- bucket_cls_r_weights = (r_offsets.abs() < 1).float()
- bucket_cls_t_weights = (t_offsets.abs() < 1).float()
- bucket_cls_d_weights = (d_offsets.abs() < 1).float()
- bucket_cls_weights = torch.cat([
- bucket_cls_l_weights, bucket_cls_r_weights, bucket_cls_t_weights,
- bucket_cls_d_weights
- ],
- dim=-1)
- # ignore second nearest buckets for cls if necessary
- if cls_ignore_neighbor:
- bucket_cls_weights = (~((bucket_cls_weights == 1) &
- (bucket_labels == 0))).float()
- else:
- bucket_cls_weights[:] = 1.0
- return offsets, offsets_weights, bucket_labels, bucket_cls_weights
- def bucket2bbox(proposals: Tensor,
- cls_preds: Tensor,
- offset_preds: Tensor,
- num_buckets: int,
- scale_factor: float = 1.0,
- max_shape: Optional[Union[Sequence[int], Tensor,
- Sequence[Sequence[int]]]] = None,
- clip_border: bool = True) -> Tuple[Tensor]:
- """Apply bucketing estimation (cls preds) and fine regression (offset
- preds) to generate det bboxes.
- Args:
- proposals (Tensor): Boxes to be transformed. Shape (n, 4)
- cls_preds (Tensor): bucketing estimation. Shape (n, num_buckets*2).
- offset_preds (Tensor): fine regression. Shape (n, num_buckets*2).
- num_buckets (int): Number of buckets.
- scale_factor (float): Scale factor to rescale proposals.
- max_shape (tuple[int, int]): Maximum bounds for boxes. specifies (H, W)
- clip_border (bool, optional): Whether clip the objects outside the
- border of the image. Defaults to True.
- Returns:
- tuple[Tensor]: (bboxes, loc_confidence).
- - bboxes: predicted bboxes. Shape (n, 4)
- - loc_confidence: localization confidence of predicted bboxes.
- Shape (n,).
- """
- side_num = int(np.ceil(num_buckets / 2.0))
- cls_preds = cls_preds.view(-1, side_num)
- offset_preds = offset_preds.view(-1, side_num)
- scores = F.softmax(cls_preds, dim=1)
- score_topk, score_label = scores.topk(2, dim=1, largest=True, sorted=True)
- rescaled_proposals = bbox_rescale(proposals, scale_factor)
- pw = rescaled_proposals[..., 2] - rescaled_proposals[..., 0]
- ph = rescaled_proposals[..., 3] - rescaled_proposals[..., 1]
- px1 = rescaled_proposals[..., 0]
- py1 = rescaled_proposals[..., 1]
- px2 = rescaled_proposals[..., 2]
- py2 = rescaled_proposals[..., 3]
- bucket_w = pw / num_buckets
- bucket_h = ph / num_buckets
- score_inds_l = score_label[0::4, 0]
- score_inds_r = score_label[1::4, 0]
- score_inds_t = score_label[2::4, 0]
- score_inds_d = score_label[3::4, 0]
- l_buckets = px1 + (0.5 + score_inds_l.float()) * bucket_w
- r_buckets = px2 - (0.5 + score_inds_r.float()) * bucket_w
- t_buckets = py1 + (0.5 + score_inds_t.float()) * bucket_h
- d_buckets = py2 - (0.5 + score_inds_d.float()) * bucket_h
- offsets = offset_preds.view(-1, 4, side_num)
- inds = torch.arange(proposals.size(0)).to(proposals).long()
- l_offsets = offsets[:, 0, :][inds, score_inds_l]
- r_offsets = offsets[:, 1, :][inds, score_inds_r]
- t_offsets = offsets[:, 2, :][inds, score_inds_t]
- d_offsets = offsets[:, 3, :][inds, score_inds_d]
- x1 = l_buckets - l_offsets * bucket_w
- x2 = r_buckets - r_offsets * bucket_w
- y1 = t_buckets - t_offsets * bucket_h
- y2 = d_buckets - d_offsets * bucket_h
- if clip_border and max_shape is not None:
- x1 = x1.clamp(min=0, max=max_shape[1] - 1)
- y1 = y1.clamp(min=0, max=max_shape[0] - 1)
- x2 = x2.clamp(min=0, max=max_shape[1] - 1)
- y2 = y2.clamp(min=0, max=max_shape[0] - 1)
- bboxes = torch.cat([x1[:, None], y1[:, None], x2[:, None], y2[:, None]],
- dim=-1)
- # bucketing guided rescoring
- loc_confidence = score_topk[:, 0]
- top2_neighbor_inds = (score_label[:, 0] - score_label[:, 1]).abs() == 1
- loc_confidence += score_topk[:, 1] * top2_neighbor_inds.float()
- loc_confidence = loc_confidence.view(-1, 4).mean(dim=1)
- return bboxes, loc_confidence
|