123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227 |
- # Copyright (c) OpenMMLab. All rights reserved.
- from typing import Optional, Tuple
- import torch
- import torch.nn.functional as F
- from mmengine.structures import InstanceData
- from torch import Tensor
- from mmdet.registry import TASK_UTILS
- from mmdet.structures.bbox import BaseBoxes
- from mmdet.utils import ConfigType
- from .assign_result import AssignResult
- from .base_assigner import BaseAssigner
- INF = 100000000
- EPS = 1.0e-7
- def center_of_mass(masks: Tensor, eps: float = 1e-7) -> Tensor:
- """Compute the masks center of mass.
- Args:
- masks: Mask tensor, has shape (num_masks, H, W).
- eps: a small number to avoid normalizer to be zero.
- Defaults to 1e-7.
- Returns:
- Tensor: The masks center of mass. Has shape (num_masks, 2).
- """
- n, h, w = masks.shape
- grid_h = torch.arange(h, device=masks.device)[:, None]
- grid_w = torch.arange(w, device=masks.device)
- normalizer = masks.sum(dim=(1, 2)).float().clamp(min=eps)
- center_y = (masks * grid_h).sum(dim=(1, 2)) / normalizer
- center_x = (masks * grid_w).sum(dim=(1, 2)) / normalizer
- center = torch.cat([center_x[:, None], center_y[:, None]], dim=1)
- return center
- @TASK_UTILS.register_module()
- class DynamicSoftLabelAssigner(BaseAssigner):
- """Computes matching between predictions and ground truth with dynamic soft
- label assignment.
- Args:
- soft_center_radius (float): Radius of the soft center prior.
- Defaults to 3.0.
- topk (int): Select top-k predictions to calculate dynamic k
- best matches for each gt. Defaults to 13.
- iou_weight (float): The scale factor of iou cost. Defaults to 3.0.
- iou_calculator (ConfigType): Config of overlaps Calculator.
- Defaults to dict(type='BboxOverlaps2D').
- """
- def __init__(
- self,
- soft_center_radius: float = 3.0,
- topk: int = 13,
- iou_weight: float = 3.0,
- iou_calculator: ConfigType = dict(type='BboxOverlaps2D')
- ) -> None:
- self.soft_center_radius = soft_center_radius
- self.topk = topk
- self.iou_weight = iou_weight
- self.iou_calculator = TASK_UTILS.build(iou_calculator)
- def assign(self,
- pred_instances: InstanceData,
- gt_instances: InstanceData,
- gt_instances_ignore: Optional[InstanceData] = None,
- **kwargs) -> AssignResult:
- """Assign gt to priors.
- Args:
- pred_instances (:obj:`InstanceData`): Instances of model
- predictions. It includes ``priors``, and the priors can
- be anchors or points, or the bboxes predicted by the
- previous stage, has shape (n, 4). The bboxes predicted by
- the current model or stage will be named ``bboxes``,
- ``labels``, and ``scores``, the same as the ``InstanceData``
- in other places.
- gt_instances (:obj:`InstanceData`): Ground truth of instance
- annotations. It usually includes ``bboxes``, with shape (k, 4),
- and ``labels``, with shape (k, ).
- gt_instances_ignore (:obj:`InstanceData`, optional): Instances
- to be ignored during training. It includes ``bboxes``
- attribute data that is ignored during training and testing.
- Defaults to None.
- Returns:
- obj:`AssignResult`: The assigned result.
- """
- gt_bboxes = gt_instances.bboxes
- gt_labels = gt_instances.labels
- num_gt = gt_bboxes.size(0)
- decoded_bboxes = pred_instances.bboxes
- pred_scores = pred_instances.scores
- priors = pred_instances.priors
- num_bboxes = decoded_bboxes.size(0)
- # assign 0 by default
- assigned_gt_inds = decoded_bboxes.new_full((num_bboxes, ),
- 0,
- dtype=torch.long)
- if num_gt == 0 or num_bboxes == 0:
- # No ground truth or boxes, return empty assignment
- max_overlaps = decoded_bboxes.new_zeros((num_bboxes, ))
- if num_gt == 0:
- # No truth, assign everything to background
- assigned_gt_inds[:] = 0
- assigned_labels = decoded_bboxes.new_full((num_bboxes, ),
- -1,
- dtype=torch.long)
- return AssignResult(
- num_gt, assigned_gt_inds, max_overlaps, labels=assigned_labels)
- prior_center = priors[:, :2]
- if isinstance(gt_bboxes, BaseBoxes):
- is_in_gts = gt_bboxes.find_inside_points(prior_center)
- else:
- # Tensor boxes will be treated as horizontal boxes by defaults
- lt_ = prior_center[:, None] - gt_bboxes[:, :2]
- rb_ = gt_bboxes[:, 2:] - prior_center[:, None]
- deltas = torch.cat([lt_, rb_], dim=-1)
- is_in_gts = deltas.min(dim=-1).values > 0
- valid_mask = is_in_gts.sum(dim=1) > 0
- valid_decoded_bbox = decoded_bboxes[valid_mask]
- valid_pred_scores = pred_scores[valid_mask]
- num_valid = valid_decoded_bbox.size(0)
- if num_valid == 0:
- # No ground truth or boxes, return empty assignment
- max_overlaps = decoded_bboxes.new_zeros((num_bboxes, ))
- assigned_labels = decoded_bboxes.new_full((num_bboxes, ),
- -1,
- dtype=torch.long)
- return AssignResult(
- num_gt, assigned_gt_inds, max_overlaps, labels=assigned_labels)
- if hasattr(gt_instances, 'masks'):
- gt_center = center_of_mass(gt_instances.masks, eps=EPS)
- elif isinstance(gt_bboxes, BaseBoxes):
- gt_center = gt_bboxes.centers
- else:
- # Tensor boxes will be treated as horizontal boxes by defaults
- gt_center = (gt_bboxes[:, :2] + gt_bboxes[:, 2:]) / 2.0
- valid_prior = priors[valid_mask]
- strides = valid_prior[:, 2]
- distance = (valid_prior[:, None, :2] - gt_center[None, :, :]
- ).pow(2).sum(-1).sqrt() / strides[:, None]
- soft_center_prior = torch.pow(10, distance - self.soft_center_radius)
- pairwise_ious = self.iou_calculator(valid_decoded_bbox, gt_bboxes)
- iou_cost = -torch.log(pairwise_ious + EPS) * self.iou_weight
- gt_onehot_label = (
- F.one_hot(gt_labels.to(torch.int64),
- pred_scores.shape[-1]).float().unsqueeze(0).repeat(
- num_valid, 1, 1))
- valid_pred_scores = valid_pred_scores.unsqueeze(1).repeat(1, num_gt, 1)
- soft_label = gt_onehot_label * pairwise_ious[..., None]
- scale_factor = soft_label - valid_pred_scores.sigmoid()
- soft_cls_cost = F.binary_cross_entropy_with_logits(
- valid_pred_scores, soft_label,
- reduction='none') * scale_factor.abs().pow(2.0)
- soft_cls_cost = soft_cls_cost.sum(dim=-1)
- cost_matrix = soft_cls_cost + iou_cost + soft_center_prior
- matched_pred_ious, matched_gt_inds = self.dynamic_k_matching(
- cost_matrix, pairwise_ious, num_gt, valid_mask)
- # convert to AssignResult format
- assigned_gt_inds[valid_mask] = matched_gt_inds + 1
- assigned_labels = assigned_gt_inds.new_full((num_bboxes, ), -1)
- assigned_labels[valid_mask] = gt_labels[matched_gt_inds].long()
- max_overlaps = assigned_gt_inds.new_full((num_bboxes, ),
- -INF,
- dtype=torch.float32)
- max_overlaps[valid_mask] = matched_pred_ious
- return AssignResult(
- num_gt, assigned_gt_inds, max_overlaps, labels=assigned_labels)
- def dynamic_k_matching(self, cost: Tensor, pairwise_ious: Tensor,
- num_gt: int,
- valid_mask: Tensor) -> Tuple[Tensor, Tensor]:
- """Use IoU and matching cost to calculate the dynamic top-k positive
- targets. Same as SimOTA.
- Args:
- cost (Tensor): Cost matrix.
- pairwise_ious (Tensor): Pairwise iou matrix.
- num_gt (int): Number of gt.
- valid_mask (Tensor): Mask for valid bboxes.
- Returns:
- tuple: matched ious and gt indexes.
- """
- matching_matrix = torch.zeros_like(cost, dtype=torch.uint8)
- # select candidate topk ious for dynamic-k calculation
- candidate_topk = min(self.topk, pairwise_ious.size(0))
- topk_ious, _ = torch.topk(pairwise_ious, candidate_topk, dim=0)
- # calculate dynamic k for each gt
- dynamic_ks = torch.clamp(topk_ious.sum(0).int(), min=1)
- for gt_idx in range(num_gt):
- _, pos_idx = torch.topk(
- cost[:, gt_idx], k=dynamic_ks[gt_idx], largest=False)
- matching_matrix[:, gt_idx][pos_idx] = 1
- del topk_ious, dynamic_ks, pos_idx
- prior_match_gt_mask = matching_matrix.sum(1) > 1
- if prior_match_gt_mask.sum() > 0:
- cost_min, cost_argmin = torch.min(
- cost[prior_match_gt_mask, :], dim=1)
- matching_matrix[prior_match_gt_mask, :] *= 0
- matching_matrix[prior_match_gt_mask, cost_argmin] = 1
- # get foreground mask inside box and center prior
- fg_mask_inboxes = matching_matrix.sum(1) > 0
- valid_mask[valid_mask.clone()] = fg_mask_inboxes
- matched_gt_inds = matching_matrix[fg_mask_inboxes, :].argmax(1)
- matched_pred_ious = (matching_matrix *
- pairwise_ious).sum(1)[fg_mask_inboxes]
- return matched_pred_ious, matched_gt_inds
|