123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145 |
- # Copyright (c) OpenMMLab. All rights reserved.
- # Copyright (c) 2019 Western Digital Corporation or its affiliates.
- from typing import List, Tuple
- import torch
- import torch.nn.functional as F
- from mmcv.cnn import ConvModule
- from mmengine.model import BaseModule
- from torch import Tensor
- from mmdet.registry import MODELS
- from mmdet.utils import ConfigType, OptConfigType, OptMultiConfig
- class DetectionBlock(BaseModule):
- """Detection block in YOLO neck.
- Let out_channels = n, the DetectionBlock contains:
- Six ConvLayers, 1 Conv2D Layer and 1 YoloLayer.
- The first 6 ConvLayers are formed the following way:
- 1x1xn, 3x3x2n, 1x1xn, 3x3x2n, 1x1xn, 3x3x2n.
- The Conv2D layer is 1x1x255.
- Some block will have branch after the fifth ConvLayer.
- The input channel is arbitrary (in_channels)
- Args:
- in_channels (int): The number of input channels.
- out_channels (int): The number of output channels.
- conv_cfg (dict): Config dict for convolution layer. Default: None.
- norm_cfg (dict): Dictionary to construct and config norm layer.
- Default: dict(type='BN', requires_grad=True)
- act_cfg (dict): Config dict for activation layer.
- Default: dict(type='LeakyReLU', negative_slope=0.1).
- init_cfg (dict or list[dict], optional): Initialization config dict.
- Default: None
- """
- def __init__(self,
- in_channels: int,
- out_channels: int,
- conv_cfg: OptConfigType = None,
- norm_cfg: ConfigType = dict(type='BN', requires_grad=True),
- act_cfg: ConfigType = dict(
- type='LeakyReLU', negative_slope=0.1),
- init_cfg: OptMultiConfig = None) -> None:
- super(DetectionBlock, self).__init__(init_cfg)
- double_out_channels = out_channels * 2
- # shortcut
- cfg = dict(conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg)
- self.conv1 = ConvModule(in_channels, out_channels, 1, **cfg)
- self.conv2 = ConvModule(
- out_channels, double_out_channels, 3, padding=1, **cfg)
- self.conv3 = ConvModule(double_out_channels, out_channels, 1, **cfg)
- self.conv4 = ConvModule(
- out_channels, double_out_channels, 3, padding=1, **cfg)
- self.conv5 = ConvModule(double_out_channels, out_channels, 1, **cfg)
- def forward(self, x: Tensor) -> Tensor:
- tmp = self.conv1(x)
- tmp = self.conv2(tmp)
- tmp = self.conv3(tmp)
- tmp = self.conv4(tmp)
- out = self.conv5(tmp)
- return out
- @MODELS.register_module()
- class YOLOV3Neck(BaseModule):
- """The neck of YOLOV3.
- It can be treated as a simplified version of FPN. It
- will take the result from Darknet backbone and do some upsampling and
- concatenation. It will finally output the detection result.
- Note:
- The input feats should be from top to bottom.
- i.e., from high-lvl to low-lvl
- But YOLOV3Neck will process them in reversed order.
- i.e., from bottom (high-lvl) to top (low-lvl)
- Args:
- num_scales (int): The number of scales / stages.
- in_channels (List[int]): The number of input channels per scale.
- out_channels (List[int]): The number of output channels per scale.
- conv_cfg (dict, optional): Config dict for convolution layer.
- Default: None.
- norm_cfg (dict, optional): Dictionary to construct and config norm
- layer. Default: dict(type='BN', requires_grad=True)
- act_cfg (dict, optional): Config dict for activation layer.
- Default: dict(type='LeakyReLU', negative_slope=0.1).
- init_cfg (dict or list[dict], optional): Initialization config dict.
- Default: None
- """
- def __init__(self,
- num_scales: int,
- in_channels: List[int],
- out_channels: List[int],
- conv_cfg: OptConfigType = None,
- norm_cfg: ConfigType = dict(type='BN', requires_grad=True),
- act_cfg: ConfigType = dict(
- type='LeakyReLU', negative_slope=0.1),
- init_cfg: OptMultiConfig = None) -> None:
- super(YOLOV3Neck, self).__init__(init_cfg)
- assert (num_scales == len(in_channels) == len(out_channels))
- self.num_scales = num_scales
- self.in_channels = in_channels
- self.out_channels = out_channels
- # shortcut
- cfg = dict(conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg)
- # To support arbitrary scales, the code looks awful, but it works.
- # Better solution is welcomed.
- self.detect1 = DetectionBlock(in_channels[0], out_channels[0], **cfg)
- for i in range(1, self.num_scales):
- in_c, out_c = self.in_channels[i], self.out_channels[i]
- inter_c = out_channels[i - 1]
- self.add_module(f'conv{i}', ConvModule(inter_c, out_c, 1, **cfg))
- # in_c + out_c : High-lvl feats will be cat with low-lvl feats
- self.add_module(f'detect{i+1}',
- DetectionBlock(in_c + out_c, out_c, **cfg))
- def forward(self, feats=Tuple[Tensor]) -> Tuple[Tensor]:
- assert len(feats) == self.num_scales
- # processed from bottom (high-lvl) to top (low-lvl)
- outs = []
- out = self.detect1(feats[-1])
- outs.append(out)
- for i, x in enumerate(reversed(feats[:-1])):
- conv = getattr(self, f'conv{i+1}')
- tmp = conv(out)
- # Cat with low-lvl feats
- tmp = F.interpolate(tmp, scale_factor=2)
- tmp = torch.cat((tmp, x), 1)
- detect = getattr(self, f'detect{i+2}')
- out = detect(tmp)
- outs.append(out)
- return tuple(outs)
|