123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168 |
- # Copyright (c) OpenMMLab. All rights reserved.
- import math
- import torch
- import torch.nn as nn
- from mmengine.model import BaseModule
- from torch import Tensor
- from mmdet.registry import MODELS
- from mmdet.utils import MultiConfig, OptMultiConfig
- @MODELS.register_module()
- class SinePositionalEncoding(BaseModule):
- """Position encoding with sine and cosine functions.
- See `End-to-End Object Detection with Transformers
- <https://arxiv.org/pdf/2005.12872>`_ for details.
- Args:
- num_feats (int): The feature dimension for each position
- along x-axis or y-axis. Note the final returned dimension
- for each position is 2 times of this value.
- temperature (int, optional): The temperature used for scaling
- the position embedding. Defaults to 10000.
- normalize (bool, optional): Whether to normalize the position
- embedding. Defaults to False.
- scale (float, optional): A scale factor that scales the position
- embedding. The scale will be used only when `normalize` is True.
- Defaults to 2*pi.
- eps (float, optional): A value added to the denominator for
- numerical stability. Defaults to 1e-6.
- offset (float): offset add to embed when do the normalization.
- Defaults to 0.
- init_cfg (dict or list[dict], optional): Initialization config dict.
- Defaults to None
- """
- def __init__(self,
- num_feats: int,
- temperature: int = 10000,
- normalize: bool = False,
- scale: float = 2 * math.pi,
- eps: float = 1e-6,
- offset: float = 0.,
- init_cfg: OptMultiConfig = None) -> None:
- super().__init__(init_cfg=init_cfg)
- if normalize:
- assert isinstance(scale, (float, int)), 'when normalize is set,' \
- 'scale should be provided and in float or int type, ' \
- f'found {type(scale)}'
- self.num_feats = num_feats
- self.temperature = temperature
- self.normalize = normalize
- self.scale = scale
- self.eps = eps
- self.offset = offset
- def forward(self, mask: Tensor) -> Tensor:
- """Forward function for `SinePositionalEncoding`.
- Args:
- mask (Tensor): ByteTensor mask. Non-zero values representing
- ignored positions, while zero values means valid positions
- for this image. Shape [bs, h, w].
- Returns:
- pos (Tensor): Returned position embedding with shape
- [bs, num_feats*2, h, w].
- """
- # For convenience of exporting to ONNX, it's required to convert
- # `masks` from bool to int.
- mask = mask.to(torch.int)
- not_mask = 1 - mask # logical_not
- y_embed = not_mask.cumsum(1, dtype=torch.float32)
- x_embed = not_mask.cumsum(2, dtype=torch.float32)
- if self.normalize:
- y_embed = (y_embed + self.offset) / \
- (y_embed[:, -1:, :] + self.eps) * self.scale
- x_embed = (x_embed + self.offset) / \
- (x_embed[:, :, -1:] + self.eps) * self.scale
- dim_t = torch.arange(
- self.num_feats, dtype=torch.float32, device=mask.device)
- dim_t = self.temperature**(2 * (dim_t // 2) / self.num_feats)
- pos_x = x_embed[:, :, :, None] / dim_t
- pos_y = y_embed[:, :, :, None] / dim_t
- # use `view` instead of `flatten` for dynamically exporting to ONNX
- B, H, W = mask.size()
- pos_x = torch.stack(
- (pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()),
- dim=4).view(B, H, W, -1)
- pos_y = torch.stack(
- (pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()),
- dim=4).view(B, H, W, -1)
- pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
- return pos
- def __repr__(self) -> str:
- """str: a string that describes the module"""
- repr_str = self.__class__.__name__
- repr_str += f'(num_feats={self.num_feats}, '
- repr_str += f'temperature={self.temperature}, '
- repr_str += f'normalize={self.normalize}, '
- repr_str += f'scale={self.scale}, '
- repr_str += f'eps={self.eps})'
- return repr_str
- @MODELS.register_module()
- class LearnedPositionalEncoding(BaseModule):
- """Position embedding with learnable embedding weights.
- Args:
- num_feats (int): The feature dimension for each position
- along x-axis or y-axis. The final returned dimension for
- each position is 2 times of this value.
- row_num_embed (int, optional): The dictionary size of row embeddings.
- Defaults to 50.
- col_num_embed (int, optional): The dictionary size of col embeddings.
- Defaults to 50.
- init_cfg (dict or list[dict], optional): Initialization config dict.
- """
- def __init__(
- self,
- num_feats: int,
- row_num_embed: int = 50,
- col_num_embed: int = 50,
- init_cfg: MultiConfig = dict(type='Uniform', layer='Embedding')
- ) -> None:
- super().__init__(init_cfg=init_cfg)
- self.row_embed = nn.Embedding(row_num_embed, num_feats)
- self.col_embed = nn.Embedding(col_num_embed, num_feats)
- self.num_feats = num_feats
- self.row_num_embed = row_num_embed
- self.col_num_embed = col_num_embed
- def forward(self, mask: Tensor) -> Tensor:
- """Forward function for `LearnedPositionalEncoding`.
- Args:
- mask (Tensor): ByteTensor mask. Non-zero values representing
- ignored positions, while zero values means valid positions
- for this image. Shape [bs, h, w].
- Returns:
- pos (Tensor): Returned position embedding with shape
- [bs, num_feats*2, h, w].
- """
- h, w = mask.shape[-2:]
- x = torch.arange(w, device=mask.device)
- y = torch.arange(h, device=mask.device)
- x_embed = self.col_embed(x)
- y_embed = self.row_embed(y)
- pos = torch.cat(
- (x_embed.unsqueeze(0).repeat(h, 1, 1), y_embed.unsqueeze(1).repeat(
- 1, w, 1)),
- dim=-1).permute(2, 0,
- 1).unsqueeze(0).repeat(mask.shape[0], 1, 1, 1)
- return pos
- def __repr__(self) -> str:
- """str: a string that describes the module"""
- repr_str = self.__class__.__name__
- repr_str += f'(num_feats={self.num_feats}, '
- repr_str += f'row_num_embed={self.row_num_embed}, '
- repr_str += f'col_num_embed={self.col_num_embed})'
- return repr_str
|