123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805 |
- # Copyright (c) OpenMMLab. All rights reserved.
- from typing import List, Optional, Tuple
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from mmcv.cnn import ConvModule, Scale
- from mmcv.ops import deform_conv2d
- from mmengine import MessageHub
- from mmengine.config import ConfigDict
- from mmengine.model import bias_init_with_prob, normal_init
- from mmengine.structures import InstanceData
- from torch import Tensor
- from mmdet.registry import MODELS, TASK_UTILS
- from mmdet.structures.bbox import distance2bbox
- from mmdet.utils import (ConfigType, InstanceList, OptConfigType,
- OptInstanceList, reduce_mean)
- from ..task_modules.prior_generators import anchor_inside_flags
- from ..utils import (filter_scores_and_topk, images_to_levels, multi_apply,
- sigmoid_geometric_mean, unmap)
- from .atss_head import ATSSHead
- class TaskDecomposition(nn.Module):
- """Task decomposition module in task-aligned predictor of TOOD.
- Args:
- feat_channels (int): Number of feature channels in TOOD head.
- stacked_convs (int): Number of conv layers in TOOD head.
- la_down_rate (int): Downsample rate of layer attention.
- Defaults to 8.
- conv_cfg (:obj:`ConfigDict` or dict, optional): Config dict for
- convolution layer. Defaults to None.
- norm_cfg (:obj:`ConfigDict` or dict, optional): Config dict for
- normalization layer. Defaults to None.
- """
- def __init__(self,
- feat_channels: int,
- stacked_convs: int,
- la_down_rate: int = 8,
- conv_cfg: OptConfigType = None,
- norm_cfg: OptConfigType = None) -> None:
- super().__init__()
- self.feat_channels = feat_channels
- self.stacked_convs = stacked_convs
- self.in_channels = self.feat_channels * self.stacked_convs
- self.norm_cfg = norm_cfg
- self.layer_attention = nn.Sequential(
- nn.Conv2d(self.in_channels, self.in_channels // la_down_rate, 1),
- nn.ReLU(inplace=True),
- nn.Conv2d(
- self.in_channels // la_down_rate,
- self.stacked_convs,
- 1,
- padding=0), nn.Sigmoid())
- self.reduction_conv = ConvModule(
- self.in_channels,
- self.feat_channels,
- 1,
- stride=1,
- padding=0,
- conv_cfg=conv_cfg,
- norm_cfg=norm_cfg,
- bias=norm_cfg is None)
- def init_weights(self) -> None:
- """Initialize the parameters."""
- for m in self.layer_attention.modules():
- if isinstance(m, nn.Conv2d):
- normal_init(m, std=0.001)
- normal_init(self.reduction_conv.conv, std=0.01)
- def forward(self,
- feat: Tensor,
- avg_feat: Optional[Tensor] = None) -> Tensor:
- """Forward function of task decomposition module."""
- b, c, h, w = feat.shape
- if avg_feat is None:
- avg_feat = F.adaptive_avg_pool2d(feat, (1, 1))
- weight = self.layer_attention(avg_feat)
- # here we first compute the product between layer attention weight and
- # conv weight, and then compute the convolution between new conv weight
- # and feature map, in order to save memory and FLOPs.
- conv_weight = weight.reshape(
- b, 1, self.stacked_convs,
- 1) * self.reduction_conv.conv.weight.reshape(
- 1, self.feat_channels, self.stacked_convs, self.feat_channels)
- conv_weight = conv_weight.reshape(b, self.feat_channels,
- self.in_channels)
- feat = feat.reshape(b, self.in_channels, h * w)
- feat = torch.bmm(conv_weight, feat).reshape(b, self.feat_channels, h,
- w)
- if self.norm_cfg is not None:
- feat = self.reduction_conv.norm(feat)
- feat = self.reduction_conv.activate(feat)
- return feat
- @MODELS.register_module()
- class TOODHead(ATSSHead):
- """TOODHead used in `TOOD: Task-aligned One-stage Object Detection.
- <https://arxiv.org/abs/2108.07755>`_.
- TOOD uses Task-aligned head (T-head) and is optimized by Task Alignment
- Learning (TAL).
- Args:
- num_classes (int): Number of categories excluding the background
- category.
- in_channels (int): Number of channels in the input feature map.
- num_dcn (int): Number of deformable convolution in the head.
- Defaults to 0.
- anchor_type (str): If set to ``anchor_free``, the head will use centers
- to regress bboxes. If set to ``anchor_based``, the head will
- regress bboxes based on anchors. Defaults to ``anchor_free``.
- initial_loss_cls (:obj:`ConfigDict` or dict): Config of initial loss.
- Example:
- >>> self = TOODHead(11, 7)
- >>> feats = [torch.rand(1, 7, s, s) for s in [4, 8, 16, 32, 64]]
- >>> cls_score, bbox_pred = self.forward(feats)
- >>> assert len(cls_score) == len(self.scales)
- """
- def __init__(self,
- num_classes: int,
- in_channels: int,
- num_dcn: int = 0,
- anchor_type: str = 'anchor_free',
- initial_loss_cls: ConfigType = dict(
- type='FocalLoss',
- use_sigmoid=True,
- activated=True,
- gamma=2.0,
- alpha=0.25,
- loss_weight=1.0),
- **kwargs) -> None:
- assert anchor_type in ['anchor_free', 'anchor_based']
- self.num_dcn = num_dcn
- self.anchor_type = anchor_type
- super().__init__(
- num_classes=num_classes, in_channels=in_channels, **kwargs)
- if self.train_cfg:
- self.initial_epoch = self.train_cfg['initial_epoch']
- self.initial_assigner = TASK_UTILS.build(
- self.train_cfg['initial_assigner'])
- self.initial_loss_cls = MODELS.build(initial_loss_cls)
- self.assigner = self.initial_assigner
- self.alignment_assigner = TASK_UTILS.build(
- self.train_cfg['assigner'])
- self.alpha = self.train_cfg['alpha']
- self.beta = self.train_cfg['beta']
- def _init_layers(self) -> None:
- """Initialize layers of the head."""
- self.relu = nn.ReLU(inplace=True)
- self.inter_convs = nn.ModuleList()
- for i in range(self.stacked_convs):
- if i < self.num_dcn:
- conv_cfg = dict(type='DCNv2', deform_groups=4)
- else:
- conv_cfg = self.conv_cfg
- chn = self.in_channels if i == 0 else self.feat_channels
- self.inter_convs.append(
- ConvModule(
- chn,
- self.feat_channels,
- 3,
- stride=1,
- padding=1,
- conv_cfg=conv_cfg,
- norm_cfg=self.norm_cfg))
- self.cls_decomp = TaskDecomposition(self.feat_channels,
- self.stacked_convs,
- self.stacked_convs * 8,
- self.conv_cfg, self.norm_cfg)
- self.reg_decomp = TaskDecomposition(self.feat_channels,
- self.stacked_convs,
- self.stacked_convs * 8,
- self.conv_cfg, self.norm_cfg)
- self.tood_cls = nn.Conv2d(
- self.feat_channels,
- self.num_base_priors * self.cls_out_channels,
- 3,
- padding=1)
- self.tood_reg = nn.Conv2d(
- self.feat_channels, self.num_base_priors * 4, 3, padding=1)
- self.cls_prob_module = nn.Sequential(
- nn.Conv2d(self.feat_channels * self.stacked_convs,
- self.feat_channels // 4, 1), nn.ReLU(inplace=True),
- nn.Conv2d(self.feat_channels // 4, 1, 3, padding=1))
- self.reg_offset_module = nn.Sequential(
- nn.Conv2d(self.feat_channels * self.stacked_convs,
- self.feat_channels // 4, 1), nn.ReLU(inplace=True),
- nn.Conv2d(self.feat_channels // 4, 4 * 2, 3, padding=1))
- self.scales = nn.ModuleList(
- [Scale(1.0) for _ in self.prior_generator.strides])
- def init_weights(self) -> None:
- """Initialize weights of the head."""
- bias_cls = bias_init_with_prob(0.01)
- for m in self.inter_convs:
- normal_init(m.conv, std=0.01)
- for m in self.cls_prob_module:
- if isinstance(m, nn.Conv2d):
- normal_init(m, std=0.01)
- for m in self.reg_offset_module:
- if isinstance(m, nn.Conv2d):
- normal_init(m, std=0.001)
- normal_init(self.cls_prob_module[-1], std=0.01, bias=bias_cls)
- self.cls_decomp.init_weights()
- self.reg_decomp.init_weights()
- normal_init(self.tood_cls, std=0.01, bias=bias_cls)
- normal_init(self.tood_reg, std=0.01)
- def forward(self, feats: Tuple[Tensor]) -> Tuple[List[Tensor]]:
- """Forward features from the upstream network.
- Args:
- feats (tuple[Tensor]): Features from the upstream network, each is
- a 4D-tensor.
- Returns:
- tuple: Usually a tuple of classification scores and bbox prediction
- cls_scores (list[Tensor]): Classification scores for all scale
- levels, each is a 4D-tensor, the channels number is
- num_anchors * num_classes.
- bbox_preds (list[Tensor]): Decoded box for all scale levels,
- each is a 4D-tensor, the channels number is
- num_anchors * 4. In [tl_x, tl_y, br_x, br_y] format.
- """
- cls_scores = []
- bbox_preds = []
- for idx, (x, scale, stride) in enumerate(
- zip(feats, self.scales, self.prior_generator.strides)):
- b, c, h, w = x.shape
- anchor = self.prior_generator.single_level_grid_priors(
- (h, w), idx, device=x.device)
- anchor = torch.cat([anchor for _ in range(b)])
- # extract task interactive features
- inter_feats = []
- for inter_conv in self.inter_convs:
- x = inter_conv(x)
- inter_feats.append(x)
- feat = torch.cat(inter_feats, 1)
- # task decomposition
- avg_feat = F.adaptive_avg_pool2d(feat, (1, 1))
- cls_feat = self.cls_decomp(feat, avg_feat)
- reg_feat = self.reg_decomp(feat, avg_feat)
- # cls prediction and alignment
- cls_logits = self.tood_cls(cls_feat)
- cls_prob = self.cls_prob_module(feat)
- cls_score = sigmoid_geometric_mean(cls_logits, cls_prob)
- # reg prediction and alignment
- if self.anchor_type == 'anchor_free':
- reg_dist = scale(self.tood_reg(reg_feat).exp()).float()
- reg_dist = reg_dist.permute(0, 2, 3, 1).reshape(-1, 4)
- reg_bbox = distance2bbox(
- self.anchor_center(anchor) / stride[0],
- reg_dist).reshape(b, h, w, 4).permute(0, 3, 1,
- 2) # (b, c, h, w)
- elif self.anchor_type == 'anchor_based':
- reg_dist = scale(self.tood_reg(reg_feat)).float()
- reg_dist = reg_dist.permute(0, 2, 3, 1).reshape(-1, 4)
- reg_bbox = self.bbox_coder.decode(anchor, reg_dist).reshape(
- b, h, w, 4).permute(0, 3, 1, 2) / stride[0]
- else:
- raise NotImplementedError(
- f'Unknown anchor type: {self.anchor_type}.'
- f'Please use `anchor_free` or `anchor_based`.')
- reg_offset = self.reg_offset_module(feat)
- bbox_pred = self.deform_sampling(reg_bbox.contiguous(),
- reg_offset.contiguous())
- # After deform_sampling, some boxes will become invalid (The
- # left-top point is at the right or bottom of the right-bottom
- # point), which will make the GIoULoss negative.
- invalid_bbox_idx = (bbox_pred[:, [0]] > bbox_pred[:, [2]]) | \
- (bbox_pred[:, [1]] > bbox_pred[:, [3]])
- invalid_bbox_idx = invalid_bbox_idx.expand_as(bbox_pred)
- bbox_pred = torch.where(invalid_bbox_idx, reg_bbox, bbox_pred)
- cls_scores.append(cls_score)
- bbox_preds.append(bbox_pred)
- return tuple(cls_scores), tuple(bbox_preds)
- def deform_sampling(self, feat: Tensor, offset: Tensor) -> Tensor:
- """Sampling the feature x according to offset.
- Args:
- feat (Tensor): Feature
- offset (Tensor): Spatial offset for feature sampling
- """
- # it is an equivalent implementation of bilinear interpolation
- b, c, h, w = feat.shape
- weight = feat.new_ones(c, 1, 1, 1)
- y = deform_conv2d(feat, offset, weight, 1, 0, 1, c, c)
- return y
- def anchor_center(self, anchors: Tensor) -> Tensor:
- """Get anchor centers from anchors.
- Args:
- anchors (Tensor): Anchor list with shape (N, 4), "xyxy" format.
- Returns:
- Tensor: Anchor centers with shape (N, 2), "xy" format.
- """
- anchors_cx = (anchors[:, 2] + anchors[:, 0]) / 2
- anchors_cy = (anchors[:, 3] + anchors[:, 1]) / 2
- return torch.stack([anchors_cx, anchors_cy], dim=-1)
- def loss_by_feat_single(self, anchors: Tensor, cls_score: Tensor,
- bbox_pred: Tensor, labels: Tensor,
- label_weights: Tensor, bbox_targets: Tensor,
- alignment_metrics: Tensor,
- stride: Tuple[int, int]) -> dict:
- """Calculate the loss of a single scale level based on the features
- extracted by the detection head.
- Args:
- anchors (Tensor): Box reference for each scale level with shape
- (N, num_total_anchors, 4).
- cls_score (Tensor): Box scores for each scale level
- Has shape (N, num_anchors * num_classes, H, W).
- bbox_pred (Tensor): Decoded bboxes for each scale
- level with shape (N, num_anchors * 4, H, W).
- labels (Tensor): Labels of each anchors with shape
- (N, num_total_anchors).
- label_weights (Tensor): Label weights of each anchor with shape
- (N, num_total_anchors).
- bbox_targets (Tensor): BBox regression targets of each anchor with
- shape (N, num_total_anchors, 4).
- alignment_metrics (Tensor): Alignment metrics with shape
- (N, num_total_anchors).
- stride (Tuple[int, int]): Downsample stride of the feature map.
- Returns:
- dict[str, Tensor]: A dictionary of loss components.
- """
- assert stride[0] == stride[1], 'h stride is not equal to w stride!'
- anchors = anchors.reshape(-1, 4)
- cls_score = cls_score.permute(0, 2, 3, 1).reshape(
- -1, self.cls_out_channels).contiguous()
- bbox_pred = bbox_pred.permute(0, 2, 3, 1).reshape(-1, 4)
- bbox_targets = bbox_targets.reshape(-1, 4)
- labels = labels.reshape(-1)
- alignment_metrics = alignment_metrics.reshape(-1)
- label_weights = label_weights.reshape(-1)
- targets = labels if self.epoch < self.initial_epoch else (
- labels, alignment_metrics)
- cls_loss_func = self.initial_loss_cls \
- if self.epoch < self.initial_epoch else self.loss_cls
- loss_cls = cls_loss_func(
- cls_score, targets, label_weights, avg_factor=1.0)
- # FG cat_id: [0, num_classes -1], BG cat_id: num_classes
- bg_class_ind = self.num_classes
- pos_inds = ((labels >= 0)
- & (labels < bg_class_ind)).nonzero().squeeze(1)
- if len(pos_inds) > 0:
- pos_bbox_targets = bbox_targets[pos_inds]
- pos_bbox_pred = bbox_pred[pos_inds]
- pos_anchors = anchors[pos_inds]
- pos_decode_bbox_pred = pos_bbox_pred
- pos_decode_bbox_targets = pos_bbox_targets / stride[0]
- # regression loss
- pos_bbox_weight = self.centerness_target(
- pos_anchors, pos_bbox_targets
- ) if self.epoch < self.initial_epoch else alignment_metrics[
- pos_inds]
- loss_bbox = self.loss_bbox(
- pos_decode_bbox_pred,
- pos_decode_bbox_targets,
- weight=pos_bbox_weight,
- avg_factor=1.0)
- else:
- loss_bbox = bbox_pred.sum() * 0
- pos_bbox_weight = bbox_targets.new_tensor(0.)
- return loss_cls, loss_bbox, alignment_metrics.sum(
- ), pos_bbox_weight.sum()
- def loss_by_feat(
- self,
- cls_scores: List[Tensor],
- bbox_preds: List[Tensor],
- batch_gt_instances: InstanceList,
- batch_img_metas: List[dict],
- batch_gt_instances_ignore: OptInstanceList = None) -> dict:
- """Calculate the loss based on the features extracted by the detection
- head.
- Args:
- cls_scores (list[Tensor]): Box scores for each scale level
- Has shape (N, num_anchors * num_classes, H, W)
- bbox_preds (list[Tensor]): Decoded box for each scale
- level with shape (N, num_anchors * 4, H, W) in
- [tl_x, tl_y, br_x, br_y] format.
- batch_gt_instances (list[:obj:`InstanceData`]): Batch of
- gt_instance. It usually includes ``bboxes`` and ``labels``
- attributes.
- batch_img_metas (list[dict]): Meta information of each image, e.g.,
- image size, scaling factor, etc.
- batch_gt_instances_ignore (list[:obj:`InstanceData`], Optional):
- Batch of gt_instances_ignore. It includes ``bboxes`` attribute
- data that is ignored during training and testing.
- Defaults to None.
- Returns:
- dict[str, Tensor]: A dictionary of loss components.
- """
- num_imgs = len(batch_img_metas)
- featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
- assert len(featmap_sizes) == self.prior_generator.num_levels
- device = cls_scores[0].device
- anchor_list, valid_flag_list = self.get_anchors(
- featmap_sizes, batch_img_metas, device=device)
- flatten_cls_scores = torch.cat([
- cls_score.permute(0, 2, 3, 1).reshape(num_imgs, -1,
- self.cls_out_channels)
- for cls_score in cls_scores
- ], 1)
- flatten_bbox_preds = torch.cat([
- bbox_pred.permute(0, 2, 3, 1).reshape(num_imgs, -1, 4) * stride[0]
- for bbox_pred, stride in zip(bbox_preds,
- self.prior_generator.strides)
- ], 1)
- cls_reg_targets = self.get_targets(
- flatten_cls_scores,
- flatten_bbox_preds,
- anchor_list,
- valid_flag_list,
- batch_gt_instances,
- batch_img_metas,
- batch_gt_instances_ignore=batch_gt_instances_ignore)
- (anchor_list, labels_list, label_weights_list, bbox_targets_list,
- alignment_metrics_list) = cls_reg_targets
- losses_cls, losses_bbox, \
- cls_avg_factors, bbox_avg_factors = multi_apply(
- self.loss_by_feat_single,
- anchor_list,
- cls_scores,
- bbox_preds,
- labels_list,
- label_weights_list,
- bbox_targets_list,
- alignment_metrics_list,
- self.prior_generator.strides)
- cls_avg_factor = reduce_mean(sum(cls_avg_factors)).clamp_(min=1).item()
- losses_cls = list(map(lambda x: x / cls_avg_factor, losses_cls))
- bbox_avg_factor = reduce_mean(
- sum(bbox_avg_factors)).clamp_(min=1).item()
- losses_bbox = list(map(lambda x: x / bbox_avg_factor, losses_bbox))
- return dict(loss_cls=losses_cls, loss_bbox=losses_bbox)
- def _predict_by_feat_single(self,
- cls_score_list: List[Tensor],
- bbox_pred_list: List[Tensor],
- score_factor_list: List[Tensor],
- mlvl_priors: List[Tensor],
- img_meta: dict,
- cfg: Optional[ConfigDict] = None,
- rescale: bool = False,
- with_nms: bool = True) -> InstanceData:
- """Transform a single image's features extracted from the head into
- bbox results.
- Args:
- cls_score_list (list[Tensor]): Box scores from all scale
- levels of a single image, each item has shape
- (num_priors * num_classes, H, W).
- bbox_pred_list (list[Tensor]): Box energies / deltas from
- all scale levels of a single image, each item has shape
- (num_priors * 4, H, W).
- score_factor_list (list[Tensor]): Score factor from all scale
- levels of a single image, each item has shape
- (num_priors * 1, H, W).
- mlvl_priors (list[Tensor]): Each element in the list is
- the priors of a single level in feature pyramid. In all
- anchor-based methods, it has shape (num_priors, 4). In
- all anchor-free methods, it has shape (num_priors, 2)
- when `with_stride=True`, otherwise it still has shape
- (num_priors, 4).
- img_meta (dict): Image meta info.
- cfg (:obj:`ConfigDict`, optional): Test / postprocessing
- configuration, if None, test_cfg would be used.
- rescale (bool): If True, return boxes in original image space.
- Defaults to False.
- with_nms (bool): If True, do nms before return boxes.
- Defaults to True.
- Returns:
- tuple[Tensor]: Results of detected bboxes and labels. If with_nms
- is False and mlvl_score_factor is None, return mlvl_bboxes and
- mlvl_scores, else return mlvl_bboxes, mlvl_scores and
- mlvl_score_factor. Usually with_nms is False is used for aug
- test. If with_nms is True, then return the following format
- - det_bboxes (Tensor): Predicted bboxes with shape \
- [num_bboxes, 5], where the first 4 columns are bounding \
- box positions (tl_x, tl_y, br_x, br_y) and the 5-th \
- column are scores between 0 and 1.
- - det_labels (Tensor): Predicted labels of the corresponding \
- box with shape [num_bboxes].
- """
- cfg = self.test_cfg if cfg is None else cfg
- nms_pre = cfg.get('nms_pre', -1)
- mlvl_bboxes = []
- mlvl_scores = []
- mlvl_labels = []
- for cls_score, bbox_pred, priors, stride in zip(
- cls_score_list, bbox_pred_list, mlvl_priors,
- self.prior_generator.strides):
- assert cls_score.size()[-2:] == bbox_pred.size()[-2:]
- bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, 4) * stride[0]
- scores = cls_score.permute(1, 2,
- 0).reshape(-1, self.cls_out_channels)
- # After https://github.com/open-mmlab/mmdetection/pull/6268/,
- # this operation keeps fewer bboxes under the same `nms_pre`.
- # There is no difference in performance for most models. If you
- # find a slight drop in performance, you can set a larger
- # `nms_pre` than before.
- results = filter_scores_and_topk(
- scores, cfg.score_thr, nms_pre,
- dict(bbox_pred=bbox_pred, priors=priors))
- scores, labels, keep_idxs, filtered_results = results
- bboxes = filtered_results['bbox_pred']
- mlvl_bboxes.append(bboxes)
- mlvl_scores.append(scores)
- mlvl_labels.append(labels)
- results = InstanceData()
- results.bboxes = torch.cat(mlvl_bboxes)
- results.scores = torch.cat(mlvl_scores)
- results.labels = torch.cat(mlvl_labels)
- return self._bbox_post_process(
- results=results,
- cfg=cfg,
- rescale=rescale,
- with_nms=with_nms,
- img_meta=img_meta)
- def get_targets(self,
- cls_scores: List[List[Tensor]],
- bbox_preds: List[List[Tensor]],
- anchor_list: List[List[Tensor]],
- valid_flag_list: List[List[Tensor]],
- batch_gt_instances: InstanceList,
- batch_img_metas: List[dict],
- batch_gt_instances_ignore: OptInstanceList = None,
- unmap_outputs: bool = True) -> tuple:
- """Compute regression and classification targets for anchors in
- multiple images.
- Args:
- cls_scores (list[list[Tensor]]): Classification predictions of
- images, a 3D-Tensor with shape [num_imgs, num_priors,
- num_classes].
- bbox_preds (list[list[Tensor]]): Decoded bboxes predictions of one
- image, a 3D-Tensor with shape [num_imgs, num_priors, 4] in
- [tl_x, tl_y, br_x, br_y] format.
- anchor_list (list[list[Tensor]]): Multi level anchors of each
- image. The outer list indicates images, and the inner list
- corresponds to feature levels of the image. Each element of
- the inner list is a tensor of shape (num_anchors, 4).
- valid_flag_list (list[list[Tensor]]): Multi level valid flags of
- each image. The outer list indicates images, and the inner list
- corresponds to feature levels of the image. Each element of
- the inner list is a tensor of shape (num_anchors, )
- batch_gt_instances (list[:obj:`InstanceData`]): Batch of
- gt_instance. It usually includes ``bboxes`` and ``labels``
- attributes.
- batch_img_metas (list[dict]): Meta information of each image, e.g.,
- image size, scaling factor, etc.
- batch_gt_instances_ignore (list[:obj:`InstanceData`], Optional):
- Batch of gt_instances_ignore. It includes ``bboxes`` attribute
- data that is ignored during training and testing.
- Defaults to None.
- unmap_outputs (bool): Whether to map outputs back to the original
- set of anchors.
- Returns:
- tuple: a tuple containing learning targets.
- - anchors_list (list[list[Tensor]]): Anchors of each level.
- - labels_list (list[Tensor]): Labels of each level.
- - label_weights_list (list[Tensor]): Label weights of each
- level.
- - bbox_targets_list (list[Tensor]): BBox targets of each level.
- - norm_alignment_metrics_list (list[Tensor]): Normalized
- alignment metrics of each level.
- """
- num_imgs = len(batch_img_metas)
- assert len(anchor_list) == len(valid_flag_list) == num_imgs
- # anchor number of multi levels
- num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]]
- num_level_anchors_list = [num_level_anchors] * num_imgs
- # concat all level anchors and flags to a single tensor
- for i in range(num_imgs):
- assert len(anchor_list[i]) == len(valid_flag_list[i])
- anchor_list[i] = torch.cat(anchor_list[i])
- valid_flag_list[i] = torch.cat(valid_flag_list[i])
- # compute targets for each image
- if batch_gt_instances_ignore is None:
- batch_gt_instances_ignore = [None] * num_imgs
- # anchor_list: list(b * [-1, 4])
- # get epoch information from message hub
- message_hub = MessageHub.get_current_instance()
- self.epoch = message_hub.get_info('epoch')
- if self.epoch < self.initial_epoch:
- (all_anchors, all_labels, all_label_weights, all_bbox_targets,
- all_bbox_weights, pos_inds_list, neg_inds_list,
- sampling_result) = multi_apply(
- super()._get_targets_single,
- anchor_list,
- valid_flag_list,
- num_level_anchors_list,
- batch_gt_instances,
- batch_img_metas,
- batch_gt_instances_ignore,
- unmap_outputs=unmap_outputs)
- all_assign_metrics = [
- weight[..., 0] for weight in all_bbox_weights
- ]
- else:
- (all_anchors, all_labels, all_label_weights, all_bbox_targets,
- all_assign_metrics) = multi_apply(
- self._get_targets_single,
- cls_scores,
- bbox_preds,
- anchor_list,
- valid_flag_list,
- batch_gt_instances,
- batch_img_metas,
- batch_gt_instances_ignore,
- unmap_outputs=unmap_outputs)
- # split targets to a list w.r.t. multiple levels
- anchors_list = images_to_levels(all_anchors, num_level_anchors)
- labels_list = images_to_levels(all_labels, num_level_anchors)
- label_weights_list = images_to_levels(all_label_weights,
- num_level_anchors)
- bbox_targets_list = images_to_levels(all_bbox_targets,
- num_level_anchors)
- norm_alignment_metrics_list = images_to_levels(all_assign_metrics,
- num_level_anchors)
- return (anchors_list, labels_list, label_weights_list,
- bbox_targets_list, norm_alignment_metrics_list)
- def _get_targets_single(self,
- cls_scores: Tensor,
- bbox_preds: Tensor,
- flat_anchors: Tensor,
- valid_flags: Tensor,
- gt_instances: InstanceData,
- img_meta: dict,
- gt_instances_ignore: Optional[InstanceData] = None,
- unmap_outputs: bool = True) -> tuple:
- """Compute regression, classification targets for anchors in a single
- image.
- Args:
- cls_scores (Tensor): Box scores for each image.
- bbox_preds (Tensor): Box energies / deltas for each image.
- flat_anchors (Tensor): Multi-level anchors of the image, which are
- concatenated into a single tensor of shape (num_anchors ,4)
- valid_flags (Tensor): Multi level valid flags of the image,
- which are concatenated into a single tensor of
- shape (num_anchors,).
- gt_instances (:obj:`InstanceData`): Ground truth of instance
- annotations. It usually includes ``bboxes`` and ``labels``
- attributes.
- img_meta (dict): Meta information for current image.
- gt_instances_ignore (:obj:`InstanceData`, optional): Instances
- to be ignored during training. It includes ``bboxes`` attribute
- data that is ignored during training and testing.
- Defaults to None.
- unmap_outputs (bool): Whether to map outputs back to the original
- set of anchors.
- Returns:
- tuple: N is the number of total anchors in the image.
- anchors (Tensor): All anchors in the image with shape (N, 4).
- labels (Tensor): Labels of all anchors in the image with shape
- (N,).
- label_weights (Tensor): Label weights of all anchor in the
- image with shape (N,).
- bbox_targets (Tensor): BBox targets of all anchors in the
- image with shape (N, 4).
- norm_alignment_metrics (Tensor): Normalized alignment metrics
- of all priors in the image with shape (N,).
- """
- inside_flags = anchor_inside_flags(flat_anchors, valid_flags,
- img_meta['img_shape'][:2],
- self.train_cfg['allowed_border'])
- if not inside_flags.any():
- raise ValueError(
- 'There is no valid anchor inside the image boundary. Please '
- 'check the image size and anchor sizes, or set '
- '``allowed_border`` to -1 to skip the condition.')
- # assign gt and sample anchors
- anchors = flat_anchors[inside_flags, :]
- pred_instances = InstanceData(
- priors=anchors,
- scores=cls_scores[inside_flags, :],
- bboxes=bbox_preds[inside_flags, :])
- assign_result = self.alignment_assigner.assign(pred_instances,
- gt_instances,
- gt_instances_ignore,
- self.alpha, self.beta)
- assign_ious = assign_result.max_overlaps
- assign_metrics = assign_result.assign_metrics
- sampling_result = self.sampler.sample(assign_result, pred_instances,
- gt_instances)
- num_valid_anchors = anchors.shape[0]
- bbox_targets = torch.zeros_like(anchors)
- labels = anchors.new_full((num_valid_anchors, ),
- self.num_classes,
- dtype=torch.long)
- label_weights = anchors.new_zeros(num_valid_anchors, dtype=torch.float)
- norm_alignment_metrics = anchors.new_zeros(
- num_valid_anchors, dtype=torch.float)
- pos_inds = sampling_result.pos_inds
- neg_inds = sampling_result.neg_inds
- if len(pos_inds) > 0:
- # point-based
- pos_bbox_targets = sampling_result.pos_gt_bboxes
- bbox_targets[pos_inds, :] = pos_bbox_targets
- labels[pos_inds] = sampling_result.pos_gt_labels
- if self.train_cfg['pos_weight'] <= 0:
- label_weights[pos_inds] = 1.0
- else:
- label_weights[pos_inds] = self.train_cfg['pos_weight']
- if len(neg_inds) > 0:
- label_weights[neg_inds] = 1.0
- class_assigned_gt_inds = torch.unique(
- sampling_result.pos_assigned_gt_inds)
- for gt_inds in class_assigned_gt_inds:
- gt_class_inds = pos_inds[sampling_result.pos_assigned_gt_inds ==
- gt_inds]
- pos_alignment_metrics = assign_metrics[gt_class_inds]
- pos_ious = assign_ious[gt_class_inds]
- pos_norm_alignment_metrics = pos_alignment_metrics / (
- pos_alignment_metrics.max() + 10e-8) * pos_ious.max()
- norm_alignment_metrics[gt_class_inds] = pos_norm_alignment_metrics
- # map up to original set of anchors
- if unmap_outputs:
- num_total_anchors = flat_anchors.size(0)
- anchors = unmap(anchors, num_total_anchors, inside_flags)
- labels = unmap(
- labels, num_total_anchors, inside_flags, fill=self.num_classes)
- label_weights = unmap(label_weights, num_total_anchors,
- inside_flags)
- bbox_targets = unmap(bbox_targets, num_total_anchors, inside_flags)
- norm_alignment_metrics = unmap(norm_alignment_metrics,
- num_total_anchors, inside_flags)
- return (anchors, labels, label_weights, bbox_targets,
- norm_alignment_metrics)
|