123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692 |
- # Copyright (c) OpenMMLab. All rights reserved.
- from typing import List, Optional, Tuple, Union
- import torch
- import torch.nn as nn
- from mmcv.cnn import ConvModule, DepthwiseSeparableConvModule, Scale, is_norm
- from mmengine.model import bias_init_with_prob, constant_init, normal_init
- from mmengine.structures import InstanceData
- from torch import Tensor
- from mmdet.registry import MODELS, TASK_UTILS
- from mmdet.structures.bbox import distance2bbox
- from mmdet.utils import ConfigType, InstanceList, OptInstanceList, reduce_mean
- from ..layers.transformer import inverse_sigmoid
- from ..task_modules import anchor_inside_flags
- from ..utils import (images_to_levels, multi_apply, sigmoid_geometric_mean,
- unmap)
- from .atss_head import ATSSHead
- @MODELS.register_module()
- class RTMDetHead(ATSSHead):
- """Detection Head of RTMDet.
- Args:
- num_classes (int): Number of categories excluding the background
- category.
- in_channels (int): Number of channels in the input feature map.
- with_objectness (bool): Whether to add an objectness branch.
- Defaults to True.
- act_cfg (:obj:`ConfigDict` or dict): Config dict for activation layer.
- Default: dict(type='ReLU')
- """
- def __init__(self,
- num_classes: int,
- in_channels: int,
- with_objectness: bool = True,
- act_cfg: ConfigType = dict(type='ReLU'),
- **kwargs) -> None:
- self.act_cfg = act_cfg
- self.with_objectness = with_objectness
- super().__init__(num_classes, in_channels, **kwargs)
- if self.train_cfg:
- self.assigner = TASK_UTILS.build(self.train_cfg['assigner'])
- def _init_layers(self):
- """Initialize layers of the head."""
- self.cls_convs = nn.ModuleList()
- self.reg_convs = nn.ModuleList()
- for i in range(self.stacked_convs):
- chn = self.in_channels if i == 0 else self.feat_channels
- self.cls_convs.append(
- ConvModule(
- chn,
- self.feat_channels,
- 3,
- stride=1,
- padding=1,
- conv_cfg=self.conv_cfg,
- norm_cfg=self.norm_cfg,
- act_cfg=self.act_cfg))
- self.reg_convs.append(
- ConvModule(
- chn,
- self.feat_channels,
- 3,
- stride=1,
- padding=1,
- conv_cfg=self.conv_cfg,
- norm_cfg=self.norm_cfg,
- act_cfg=self.act_cfg))
- pred_pad_size = self.pred_kernel_size // 2
- self.rtm_cls = nn.Conv2d(
- self.feat_channels,
- self.num_base_priors * self.cls_out_channels,
- self.pred_kernel_size,
- padding=pred_pad_size)
- self.rtm_reg = nn.Conv2d(
- self.feat_channels,
- self.num_base_priors * 4,
- self.pred_kernel_size,
- padding=pred_pad_size)
- if self.with_objectness:
- self.rtm_obj = nn.Conv2d(
- self.feat_channels,
- 1,
- self.pred_kernel_size,
- padding=pred_pad_size)
- self.scales = nn.ModuleList(
- [Scale(1.0) for _ in self.prior_generator.strides])
- def init_weights(self) -> None:
- """Initialize weights of the head."""
- for m in self.modules():
- if isinstance(m, nn.Conv2d):
- normal_init(m, mean=0, std=0.01)
- if is_norm(m):
- constant_init(m, 1)
- bias_cls = bias_init_with_prob(0.01)
- normal_init(self.rtm_cls, std=0.01, bias=bias_cls)
- normal_init(self.rtm_reg, std=0.01)
- if self.with_objectness:
- normal_init(self.rtm_obj, std=0.01, bias=bias_cls)
- def forward(self, feats: Tuple[Tensor, ...]) -> tuple:
- """Forward features from the upstream network.
- Args:
- feats (tuple[Tensor]): Features from the upstream network, each is
- a 4D-tensor.
- Returns:
- tuple: Usually a tuple of classification scores and bbox prediction
- - cls_scores (list[Tensor]): Classification scores for all scale
- levels, each is a 4D-tensor, the channels number is
- num_base_priors * num_classes.
- - bbox_preds (list[Tensor]): Box energies / deltas for all scale
- levels, each is a 4D-tensor, the channels number is
- num_base_priors * 4.
- """
- cls_scores = []
- bbox_preds = []
- for idx, (x, scale, stride) in enumerate(
- zip(feats, self.scales, self.prior_generator.strides)):
- cls_feat = x
- reg_feat = x
- for cls_layer in self.cls_convs:
- cls_feat = cls_layer(cls_feat)
- cls_score = self.rtm_cls(cls_feat)
- for reg_layer in self.reg_convs:
- reg_feat = reg_layer(reg_feat)
- if self.with_objectness:
- objectness = self.rtm_obj(reg_feat)
- cls_score = inverse_sigmoid(
- sigmoid_geometric_mean(cls_score, objectness))
- reg_dist = scale(self.rtm_reg(reg_feat).exp()).float() * stride[0]
- cls_scores.append(cls_score)
- bbox_preds.append(reg_dist)
- return tuple(cls_scores), tuple(bbox_preds)
- def loss_by_feat_single(self, cls_score: Tensor, bbox_pred: Tensor,
- labels: Tensor, label_weights: Tensor,
- bbox_targets: Tensor, assign_metrics: Tensor,
- stride: List[int]):
- """Compute loss of a single scale level.
- Args:
- cls_score (Tensor): Box scores for each scale level
- Has shape (N, num_anchors * num_classes, H, W).
- bbox_pred (Tensor): Decoded bboxes for each scale
- level with shape (N, num_anchors * 4, H, W).
- labels (Tensor): Labels of each anchors with shape
- (N, num_total_anchors).
- label_weights (Tensor): Label weights of each anchor with shape
- (N, num_total_anchors).
- bbox_targets (Tensor): BBox regression targets of each anchor with
- shape (N, num_total_anchors, 4).
- assign_metrics (Tensor): Assign metrics with shape
- (N, num_total_anchors).
- stride (List[int]): Downsample stride of the feature map.
- Returns:
- dict[str, Tensor]: A dictionary of loss components.
- """
- assert stride[0] == stride[1], 'h stride is not equal to w stride!'
- cls_score = cls_score.permute(0, 2, 3, 1).reshape(
- -1, self.cls_out_channels).contiguous()
- bbox_pred = bbox_pred.reshape(-1, 4)
- bbox_targets = bbox_targets.reshape(-1, 4)
- labels = labels.reshape(-1)
- assign_metrics = assign_metrics.reshape(-1)
- label_weights = label_weights.reshape(-1)
- targets = (labels, assign_metrics)
- loss_cls = self.loss_cls(
- cls_score, targets, label_weights, avg_factor=1.0)
- # FG cat_id: [0, num_classes -1], BG cat_id: num_classes
- bg_class_ind = self.num_classes
- pos_inds = ((labels >= 0)
- & (labels < bg_class_ind)).nonzero().squeeze(1)
- if len(pos_inds) > 0:
- pos_bbox_targets = bbox_targets[pos_inds]
- pos_bbox_pred = bbox_pred[pos_inds]
- pos_decode_bbox_pred = pos_bbox_pred
- pos_decode_bbox_targets = pos_bbox_targets
- # regression loss
- pos_bbox_weight = assign_metrics[pos_inds]
- loss_bbox = self.loss_bbox(
- pos_decode_bbox_pred,
- pos_decode_bbox_targets,
- weight=pos_bbox_weight,
- avg_factor=1.0)
- else:
- loss_bbox = bbox_pred.sum() * 0
- pos_bbox_weight = bbox_targets.new_tensor(0.)
- return loss_cls, loss_bbox, assign_metrics.sum(), pos_bbox_weight.sum()
- def loss_by_feat(self,
- cls_scores: List[Tensor],
- bbox_preds: List[Tensor],
- batch_gt_instances: InstanceList,
- batch_img_metas: List[dict],
- batch_gt_instances_ignore: OptInstanceList = None):
- """Compute losses of the head.
- Args:
- cls_scores (list[Tensor]): Box scores for each scale level
- Has shape (N, num_anchors * num_classes, H, W)
- bbox_preds (list[Tensor]): Decoded box for each scale
- level with shape (N, num_anchors * 4, H, W) in
- [tl_x, tl_y, br_x, br_y] format.
- batch_gt_instances (list[:obj:`InstanceData`]): Batch of
- gt_instance. It usually includes ``bboxes`` and ``labels``
- attributes.
- batch_img_metas (list[dict]): Meta information of each image, e.g.,
- image size, scaling factor, etc.
- batch_gt_instances_ignore (list[:obj:`InstanceData`], Optional):
- Batch of gt_instances_ignore. It includes ``bboxes`` attribute
- data that is ignored during training and testing.
- Defaults to None.
- Returns:
- dict[str, Tensor]: A dictionary of loss components.
- """
- num_imgs = len(batch_img_metas)
- featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
- assert len(featmap_sizes) == self.prior_generator.num_levels
- device = cls_scores[0].device
- anchor_list, valid_flag_list = self.get_anchors(
- featmap_sizes, batch_img_metas, device=device)
- flatten_cls_scores = torch.cat([
- cls_score.permute(0, 2, 3, 1).reshape(num_imgs, -1,
- self.cls_out_channels)
- for cls_score in cls_scores
- ], 1)
- decoded_bboxes = []
- for anchor, bbox_pred in zip(anchor_list[0], bbox_preds):
- anchor = anchor.reshape(-1, 4)
- bbox_pred = bbox_pred.permute(0, 2, 3, 1).reshape(num_imgs, -1, 4)
- bbox_pred = distance2bbox(anchor, bbox_pred)
- decoded_bboxes.append(bbox_pred)
- flatten_bboxes = torch.cat(decoded_bboxes, 1)
- cls_reg_targets = self.get_targets(
- flatten_cls_scores,
- flatten_bboxes,
- anchor_list,
- valid_flag_list,
- batch_gt_instances,
- batch_img_metas,
- batch_gt_instances_ignore=batch_gt_instances_ignore)
- (anchor_list, labels_list, label_weights_list, bbox_targets_list,
- assign_metrics_list, sampling_results_list) = cls_reg_targets
- losses_cls, losses_bbox,\
- cls_avg_factors, bbox_avg_factors = multi_apply(
- self.loss_by_feat_single,
- cls_scores,
- decoded_bboxes,
- labels_list,
- label_weights_list,
- bbox_targets_list,
- assign_metrics_list,
- self.prior_generator.strides)
- cls_avg_factor = reduce_mean(sum(cls_avg_factors)).clamp_(min=1).item()
- losses_cls = list(map(lambda x: x / cls_avg_factor, losses_cls))
- bbox_avg_factor = reduce_mean(
- sum(bbox_avg_factors)).clamp_(min=1).item()
- losses_bbox = list(map(lambda x: x / bbox_avg_factor, losses_bbox))
- return dict(loss_cls=losses_cls, loss_bbox=losses_bbox)
- def get_targets(self,
- cls_scores: Tensor,
- bbox_preds: Tensor,
- anchor_list: List[List[Tensor]],
- valid_flag_list: List[List[Tensor]],
- batch_gt_instances: InstanceList,
- batch_img_metas: List[dict],
- batch_gt_instances_ignore: OptInstanceList = None,
- unmap_outputs=True):
- """Compute regression and classification targets for anchors in
- multiple images.
- Args:
- cls_scores (Tensor): Classification predictions of images,
- a 3D-Tensor with shape [num_imgs, num_priors, num_classes].
- bbox_preds (Tensor): Decoded bboxes predictions of one image,
- a 3D-Tensor with shape [num_imgs, num_priors, 4] in [tl_x,
- tl_y, br_x, br_y] format.
- anchor_list (list[list[Tensor]]): Multi level anchors of each
- image. The outer list indicates images, and the inner list
- corresponds to feature levels of the image. Each element of
- the inner list is a tensor of shape (num_anchors, 4).
- valid_flag_list (list[list[Tensor]]): Multi level valid flags of
- each image. The outer list indicates images, and the inner list
- corresponds to feature levels of the image. Each element of
- the inner list is a tensor of shape (num_anchors, )
- batch_gt_instances (list[:obj:`InstanceData`]): Batch of
- gt_instance. It usually includes ``bboxes`` and ``labels``
- attributes.
- batch_img_metas (list[dict]): Meta information of each image, e.g.,
- image size, scaling factor, etc.
- batch_gt_instances_ignore (list[:obj:`InstanceData`], Optional):
- Batch of gt_instances_ignore. It includes ``bboxes`` attribute
- data that is ignored during training and testing.
- Defaults to None.
- unmap_outputs (bool): Whether to map outputs back to the original
- set of anchors. Defaults to True.
- Returns:
- tuple: a tuple containing learning targets.
- - anchors_list (list[list[Tensor]]): Anchors of each level.
- - labels_list (list[Tensor]): Labels of each level.
- - label_weights_list (list[Tensor]): Label weights of each
- level.
- - bbox_targets_list (list[Tensor]): BBox targets of each level.
- - assign_metrics_list (list[Tensor]): alignment metrics of each
- level.
- """
- num_imgs = len(batch_img_metas)
- assert len(anchor_list) == len(valid_flag_list) == num_imgs
- # anchor number of multi levels
- num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]]
- # concat all level anchors and flags to a single tensor
- for i in range(num_imgs):
- assert len(anchor_list[i]) == len(valid_flag_list[i])
- anchor_list[i] = torch.cat(anchor_list[i])
- valid_flag_list[i] = torch.cat(valid_flag_list[i])
- # compute targets for each image
- if batch_gt_instances_ignore is None:
- batch_gt_instances_ignore = [None] * num_imgs
- # anchor_list: list(b * [-1, 4])
- (all_anchors, all_labels, all_label_weights, all_bbox_targets,
- all_assign_metrics, sampling_results_list) = multi_apply(
- self._get_targets_single,
- cls_scores.detach(),
- bbox_preds.detach(),
- anchor_list,
- valid_flag_list,
- batch_gt_instances,
- batch_img_metas,
- batch_gt_instances_ignore,
- unmap_outputs=unmap_outputs)
- # no valid anchors
- if any([labels is None for labels in all_labels]):
- return None
- # split targets to a list w.r.t. multiple levels
- anchors_list = images_to_levels(all_anchors, num_level_anchors)
- labels_list = images_to_levels(all_labels, num_level_anchors)
- label_weights_list = images_to_levels(all_label_weights,
- num_level_anchors)
- bbox_targets_list = images_to_levels(all_bbox_targets,
- num_level_anchors)
- assign_metrics_list = images_to_levels(all_assign_metrics,
- num_level_anchors)
- return (anchors_list, labels_list, label_weights_list,
- bbox_targets_list, assign_metrics_list, sampling_results_list)
- def _get_targets_single(self,
- cls_scores: Tensor,
- bbox_preds: Tensor,
- flat_anchors: Tensor,
- valid_flags: Tensor,
- gt_instances: InstanceData,
- img_meta: dict,
- gt_instances_ignore: Optional[InstanceData] = None,
- unmap_outputs=True):
- """Compute regression, classification targets for anchors in a single
- image.
- Args:
- cls_scores (list(Tensor)): Box scores for each image.
- bbox_preds (list(Tensor)): Box energies / deltas for each image.
- flat_anchors (Tensor): Multi-level anchors of the image, which are
- concatenated into a single tensor of shape (num_anchors ,4)
- valid_flags (Tensor): Multi level valid flags of the image,
- which are concatenated into a single tensor of
- shape (num_anchors,).
- gt_instances (:obj:`InstanceData`): Ground truth of instance
- annotations. It usually includes ``bboxes`` and ``labels``
- attributes.
- img_meta (dict): Meta information for current image.
- gt_instances_ignore (:obj:`InstanceData`, optional): Instances
- to be ignored during training. It includes ``bboxes`` attribute
- data that is ignored during training and testing.
- Defaults to None.
- unmap_outputs (bool): Whether to map outputs back to the original
- set of anchors. Defaults to True.
- Returns:
- tuple: N is the number of total anchors in the image.
- - anchors (Tensor): All anchors in the image with shape (N, 4).
- - labels (Tensor): Labels of all anchors in the image with shape
- (N,).
- - label_weights (Tensor): Label weights of all anchor in the
- image with shape (N,).
- - bbox_targets (Tensor): BBox targets of all anchors in the
- image with shape (N, 4).
- - norm_alignment_metrics (Tensor): Normalized alignment metrics
- of all priors in the image with shape (N,).
- """
- inside_flags = anchor_inside_flags(flat_anchors, valid_flags,
- img_meta['img_shape'][:2],
- self.train_cfg['allowed_border'])
- if not inside_flags.any():
- return (None, ) * 7
- # assign gt and sample anchors
- anchors = flat_anchors[inside_flags, :]
- pred_instances = InstanceData(
- scores=cls_scores[inside_flags, :],
- bboxes=bbox_preds[inside_flags, :],
- priors=anchors)
- assign_result = self.assigner.assign(pred_instances, gt_instances,
- gt_instances_ignore)
- sampling_result = self.sampler.sample(assign_result, pred_instances,
- gt_instances)
- num_valid_anchors = anchors.shape[0]
- bbox_targets = torch.zeros_like(anchors)
- labels = anchors.new_full((num_valid_anchors, ),
- self.num_classes,
- dtype=torch.long)
- label_weights = anchors.new_zeros(num_valid_anchors, dtype=torch.float)
- assign_metrics = anchors.new_zeros(
- num_valid_anchors, dtype=torch.float)
- pos_inds = sampling_result.pos_inds
- neg_inds = sampling_result.neg_inds
- if len(pos_inds) > 0:
- # point-based
- pos_bbox_targets = sampling_result.pos_gt_bboxes
- bbox_targets[pos_inds, :] = pos_bbox_targets
- labels[pos_inds] = sampling_result.pos_gt_labels
- if self.train_cfg['pos_weight'] <= 0:
- label_weights[pos_inds] = 1.0
- else:
- label_weights[pos_inds] = self.train_cfg['pos_weight']
- if len(neg_inds) > 0:
- label_weights[neg_inds] = 1.0
- class_assigned_gt_inds = torch.unique(
- sampling_result.pos_assigned_gt_inds)
- for gt_inds in class_assigned_gt_inds:
- gt_class_inds = pos_inds[sampling_result.pos_assigned_gt_inds ==
- gt_inds]
- assign_metrics[gt_class_inds] = assign_result.max_overlaps[
- gt_class_inds]
- # map up to original set of anchors
- if unmap_outputs:
- num_total_anchors = flat_anchors.size(0)
- anchors = unmap(anchors, num_total_anchors, inside_flags)
- labels = unmap(
- labels, num_total_anchors, inside_flags, fill=self.num_classes)
- label_weights = unmap(label_weights, num_total_anchors,
- inside_flags)
- bbox_targets = unmap(bbox_targets, num_total_anchors, inside_flags)
- assign_metrics = unmap(assign_metrics, num_total_anchors,
- inside_flags)
- return (anchors, labels, label_weights, bbox_targets, assign_metrics,
- sampling_result)
- def get_anchors(self,
- featmap_sizes: List[tuple],
- batch_img_metas: List[dict],
- device: Union[torch.device, str] = 'cuda') \
- -> Tuple[List[List[Tensor]], List[List[Tensor]]]:
- """Get anchors according to feature map sizes.
- Args:
- featmap_sizes (list[tuple]): Multi-level feature map sizes.
- batch_img_metas (list[dict]): Image meta info.
- device (torch.device or str): Device for returned tensors.
- Defaults to cuda.
- Returns:
- tuple:
- - anchor_list (list[list[Tensor]]): Anchors of each image.
- - valid_flag_list (list[list[Tensor]]): Valid flags of each
- image.
- """
- num_imgs = len(batch_img_metas)
- # since feature map sizes of all images are the same, we only compute
- # anchors for one time
- multi_level_anchors = self.prior_generator.grid_priors(
- featmap_sizes, device=device, with_stride=True)
- anchor_list = [multi_level_anchors for _ in range(num_imgs)]
- # for each image, we compute valid flags of multi level anchors
- valid_flag_list = []
- for img_id, img_meta in enumerate(batch_img_metas):
- multi_level_flags = self.prior_generator.valid_flags(
- featmap_sizes, img_meta['pad_shape'], device)
- valid_flag_list.append(multi_level_flags)
- return anchor_list, valid_flag_list
- @MODELS.register_module()
- class RTMDetSepBNHead(RTMDetHead):
- """RTMDetHead with separated BN layers and shared conv layers.
- Args:
- num_classes (int): Number of categories excluding the background
- category.
- in_channels (int): Number of channels in the input feature map.
- share_conv (bool): Whether to share conv layers between stages.
- Defaults to True.
- use_depthwise (bool): Whether to use depthwise separable convolution in
- head. Defaults to False.
- norm_cfg (:obj:`ConfigDict` or dict)): Config dict for normalization
- layer. Defaults to dict(type='BN', momentum=0.03, eps=0.001).
- act_cfg (:obj:`ConfigDict` or dict)): Config dict for activation layer.
- Defaults to dict(type='SiLU').
- pred_kernel_size (int): Kernel size of prediction layer. Defaults to 1.
- """
- def __init__(self,
- num_classes: int,
- in_channels: int,
- share_conv: bool = True,
- use_depthwise: bool = False,
- norm_cfg: ConfigType = dict(
- type='BN', momentum=0.03, eps=0.001),
- act_cfg: ConfigType = dict(type='SiLU'),
- pred_kernel_size: int = 1,
- exp_on_reg=False,
- **kwargs) -> None:
- self.share_conv = share_conv
- self.exp_on_reg = exp_on_reg
- self.use_depthwise = use_depthwise
- super().__init__(
- num_classes,
- in_channels,
- norm_cfg=norm_cfg,
- act_cfg=act_cfg,
- pred_kernel_size=pred_kernel_size,
- **kwargs)
- def _init_layers(self) -> None:
- """Initialize layers of the head."""
- conv = DepthwiseSeparableConvModule \
- if self.use_depthwise else ConvModule
- self.cls_convs = nn.ModuleList()
- self.reg_convs = nn.ModuleList()
- self.rtm_cls = nn.ModuleList()
- self.rtm_reg = nn.ModuleList()
- if self.with_objectness:
- self.rtm_obj = nn.ModuleList()
- for n in range(len(self.prior_generator.strides)):
- cls_convs = nn.ModuleList()
- reg_convs = nn.ModuleList()
- for i in range(self.stacked_convs):
- chn = self.in_channels if i == 0 else self.feat_channels
- cls_convs.append(
- conv(
- chn,
- self.feat_channels,
- 3,
- stride=1,
- padding=1,
- conv_cfg=self.conv_cfg,
- norm_cfg=self.norm_cfg,
- act_cfg=self.act_cfg))
- reg_convs.append(
- conv(
- chn,
- self.feat_channels,
- 3,
- stride=1,
- padding=1,
- conv_cfg=self.conv_cfg,
- norm_cfg=self.norm_cfg,
- act_cfg=self.act_cfg))
- self.cls_convs.append(cls_convs)
- self.reg_convs.append(reg_convs)
- self.rtm_cls.append(
- nn.Conv2d(
- self.feat_channels,
- self.num_base_priors * self.cls_out_channels,
- self.pred_kernel_size,
- padding=self.pred_kernel_size // 2))
- self.rtm_reg.append(
- nn.Conv2d(
- self.feat_channels,
- self.num_base_priors * 4,
- self.pred_kernel_size,
- padding=self.pred_kernel_size // 2))
- if self.with_objectness:
- self.rtm_obj.append(
- nn.Conv2d(
- self.feat_channels,
- 1,
- self.pred_kernel_size,
- padding=self.pred_kernel_size // 2))
- if self.share_conv:
- for n in range(len(self.prior_generator.strides)):
- for i in range(self.stacked_convs):
- self.cls_convs[n][i].conv = self.cls_convs[0][i].conv
- self.reg_convs[n][i].conv = self.reg_convs[0][i].conv
- def init_weights(self) -> None:
- """Initialize weights of the head."""
- for m in self.modules():
- if isinstance(m, nn.Conv2d):
- normal_init(m, mean=0, std=0.01)
- if is_norm(m):
- constant_init(m, 1)
- bias_cls = bias_init_with_prob(0.01)
- for rtm_cls, rtm_reg in zip(self.rtm_cls, self.rtm_reg):
- normal_init(rtm_cls, std=0.01, bias=bias_cls)
- normal_init(rtm_reg, std=0.01)
- if self.with_objectness:
- for rtm_obj in self.rtm_obj:
- normal_init(rtm_obj, std=0.01, bias=bias_cls)
- def forward(self, feats: Tuple[Tensor, ...]) -> tuple:
- """Forward features from the upstream network.
- Args:
- feats (tuple[Tensor]): Features from the upstream network, each is
- a 4D-tensor.
- Returns:
- tuple: Usually a tuple of classification scores and bbox prediction
- - cls_scores (tuple[Tensor]): Classification scores for all scale
- levels, each is a 4D-tensor, the channels number is
- num_anchors * num_classes.
- - bbox_preds (tuple[Tensor]): Box energies / deltas for all scale
- levels, each is a 4D-tensor, the channels number is
- num_anchors * 4.
- """
- cls_scores = []
- bbox_preds = []
- for idx, (x, stride) in enumerate(
- zip(feats, self.prior_generator.strides)):
- cls_feat = x
- reg_feat = x
- for cls_layer in self.cls_convs[idx]:
- cls_feat = cls_layer(cls_feat)
- cls_score = self.rtm_cls[idx](cls_feat)
- for reg_layer in self.reg_convs[idx]:
- reg_feat = reg_layer(reg_feat)
- if self.with_objectness:
- objectness = self.rtm_obj[idx](reg_feat)
- cls_score = inverse_sigmoid(
- sigmoid_geometric_mean(cls_score, objectness))
- if self.exp_on_reg:
- reg_dist = self.rtm_reg[idx](reg_feat).exp() * stride[0]
- else:
- reg_dist = self.rtm_reg[idx](reg_feat) * stride[0]
- cls_scores.append(cls_score)
- bbox_preds.append(reg_dist)
- return tuple(cls_scores), tuple(bbox_preds)
|