123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667 |
- # Copyright (c) OpenMMLab. All rights reserved.
- from typing import List, Optional, Sequence, Tuple
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from mmcv.cnn import ConvModule, Scale
- from mmengine.config import ConfigDict
- from mmengine.structures import InstanceData
- from torch import Tensor
- from mmdet.registry import MODELS, TASK_UTILS
- from mmdet.structures.bbox import bbox_overlaps
- from mmdet.utils import (ConfigType, InstanceList, MultiConfig, OptConfigType,
- OptInstanceList, reduce_mean)
- from ..task_modules.prior_generators import anchor_inside_flags
- from ..task_modules.samplers import PseudoSampler
- from ..utils import (filter_scores_and_topk, images_to_levels, multi_apply,
- unmap)
- from .anchor_head import AnchorHead
- class Integral(nn.Module):
- """A fixed layer for calculating integral result from distribution.
- This layer calculates the target location by :math: ``sum{P(y_i) * y_i}``,
- P(y_i) denotes the softmax vector that represents the discrete distribution
- y_i denotes the discrete set, usually {0, 1, 2, ..., reg_max}
- Args:
- reg_max (int): The maximal value of the discrete set. Defaults to 16.
- You may want to reset it according to your new dataset or related
- settings.
- """
- def __init__(self, reg_max: int = 16) -> None:
- super().__init__()
- self.reg_max = reg_max
- self.register_buffer('project',
- torch.linspace(0, self.reg_max, self.reg_max + 1))
- def forward(self, x: Tensor) -> Tensor:
- """Forward feature from the regression head to get integral result of
- bounding box location.
- Args:
- x (Tensor): Features of the regression head, shape (N, 4*(n+1)),
- n is self.reg_max.
- Returns:
- x (Tensor): Integral result of box locations, i.e., distance
- offsets from the box center in four directions, shape (N, 4).
- """
- x = F.softmax(x.reshape(-1, self.reg_max + 1), dim=1)
- x = F.linear(x, self.project.type_as(x)).reshape(-1, 4)
- return x
- @MODELS.register_module()
- class GFLHead(AnchorHead):
- """Generalized Focal Loss: Learning Qualified and Distributed Bounding
- Boxes for Dense Object Detection.
- GFL head structure is similar with ATSS, however GFL uses
- 1) joint representation for classification and localization quality, and
- 2) flexible General distribution for bounding box locations,
- which are supervised by
- Quality Focal Loss (QFL) and Distribution Focal Loss (DFL), respectively
- https://arxiv.org/abs/2006.04388
- Args:
- num_classes (int): Number of categories excluding the background
- category.
- in_channels (int): Number of channels in the input feature map.
- stacked_convs (int): Number of conv layers in cls and reg tower.
- Defaults to 4.
- conv_cfg (:obj:`ConfigDict` or dict, optional): dictionary to construct
- and config conv layer. Defaults to None.
- norm_cfg (:obj:`ConfigDict` or dict): dictionary to construct and
- config norm layer. Default: dict(type='GN', num_groups=32,
- requires_grad=True).
- loss_qfl (:obj:`ConfigDict` or dict): Config of Quality Focal Loss
- (QFL).
- bbox_coder (:obj:`ConfigDict` or dict): Config of bbox coder. Defaults
- to 'DistancePointBBoxCoder'.
- reg_max (int): Max value of integral set :math: ``{0, ..., reg_max}``
- in QFL setting. Defaults to 16.
- init_cfg (:obj:`ConfigDict` or dict or list[dict] or
- list[:obj:`ConfigDict`]): Initialization config dict.
- Example:
- >>> self = GFLHead(11, 7)
- >>> feats = [torch.rand(1, 7, s, s) for s in [4, 8, 16, 32, 64]]
- >>> cls_quality_score, bbox_pred = self.forward(feats)
- >>> assert len(cls_quality_score) == len(self.scales)
- """
- def __init__(self,
- num_classes: int,
- in_channels: int,
- stacked_convs: int = 4,
- conv_cfg: OptConfigType = None,
- norm_cfg: ConfigType = dict(
- type='GN', num_groups=32, requires_grad=True),
- loss_dfl: ConfigType = dict(
- type='DistributionFocalLoss', loss_weight=0.25),
- bbox_coder: ConfigType = dict(type='DistancePointBBoxCoder'),
- reg_max: int = 16,
- init_cfg: MultiConfig = dict(
- type='Normal',
- layer='Conv2d',
- std=0.01,
- override=dict(
- type='Normal',
- name='gfl_cls',
- std=0.01,
- bias_prob=0.01)),
- **kwargs) -> None:
- self.stacked_convs = stacked_convs
- self.conv_cfg = conv_cfg
- self.norm_cfg = norm_cfg
- self.reg_max = reg_max
- super().__init__(
- num_classes=num_classes,
- in_channels=in_channels,
- bbox_coder=bbox_coder,
- init_cfg=init_cfg,
- **kwargs)
- if self.train_cfg:
- self.assigner = TASK_UTILS.build(self.train_cfg['assigner'])
- if self.train_cfg.get('sampler', None) is not None:
- self.sampler = TASK_UTILS.build(
- self.train_cfg['sampler'], default_args=dict(context=self))
- else:
- self.sampler = PseudoSampler(context=self)
- self.integral = Integral(self.reg_max)
- self.loss_dfl = MODELS.build(loss_dfl)
- def _init_layers(self) -> None:
- """Initialize layers of the head."""
- self.relu = nn.ReLU()
- self.cls_convs = nn.ModuleList()
- self.reg_convs = nn.ModuleList()
- for i in range(self.stacked_convs):
- chn = self.in_channels if i == 0 else self.feat_channels
- self.cls_convs.append(
- ConvModule(
- chn,
- self.feat_channels,
- 3,
- stride=1,
- padding=1,
- conv_cfg=self.conv_cfg,
- norm_cfg=self.norm_cfg))
- self.reg_convs.append(
- ConvModule(
- chn,
- self.feat_channels,
- 3,
- stride=1,
- padding=1,
- conv_cfg=self.conv_cfg,
- norm_cfg=self.norm_cfg))
- assert self.num_anchors == 1, 'anchor free version'
- self.gfl_cls = nn.Conv2d(
- self.feat_channels, self.cls_out_channels, 3, padding=1)
- self.gfl_reg = nn.Conv2d(
- self.feat_channels, 4 * (self.reg_max + 1), 3, padding=1)
- self.scales = nn.ModuleList(
- [Scale(1.0) for _ in self.prior_generator.strides])
- def forward(self, x: Tuple[Tensor]) -> Tuple[List[Tensor]]:
- """Forward features from the upstream network.
- Args:
- x (tuple[Tensor]): Features from the upstream network, each is
- a 4D-tensor.
- Returns:
- tuple: Usually a tuple of classification scores and bbox prediction
- - cls_scores (list[Tensor]): Classification and quality (IoU)
- joint scores for all scale levels, each is a 4D-tensor,
- the channel number is num_classes.
- - bbox_preds (list[Tensor]): Box distribution logits for all
- scale levels, each is a 4D-tensor, the channel number is
- 4*(n+1), n is max value of integral set.
- """
- return multi_apply(self.forward_single, x, self.scales)
- def forward_single(self, x: Tensor, scale: Scale) -> Sequence[Tensor]:
- """Forward feature of a single scale level.
- Args:
- x (Tensor): Features of a single scale level.
- scale (:obj: `mmcv.cnn.Scale`): Learnable scale module to resize
- the bbox prediction.
- Returns:
- tuple:
- - cls_score (Tensor): Cls and quality joint scores for a single
- scale level the channel number is num_classes.
- - bbox_pred (Tensor): Box distribution logits for a single scale
- level, the channel number is 4*(n+1), n is max value of
- integral set.
- """
- cls_feat = x
- reg_feat = x
- for cls_conv in self.cls_convs:
- cls_feat = cls_conv(cls_feat)
- for reg_conv in self.reg_convs:
- reg_feat = reg_conv(reg_feat)
- cls_score = self.gfl_cls(cls_feat)
- bbox_pred = scale(self.gfl_reg(reg_feat)).float()
- return cls_score, bbox_pred
- def anchor_center(self, anchors: Tensor) -> Tensor:
- """Get anchor centers from anchors.
- Args:
- anchors (Tensor): Anchor list with shape (N, 4), ``xyxy`` format.
- Returns:
- Tensor: Anchor centers with shape (N, 2), ``xy`` format.
- """
- anchors_cx = (anchors[..., 2] + anchors[..., 0]) / 2
- anchors_cy = (anchors[..., 3] + anchors[..., 1]) / 2
- return torch.stack([anchors_cx, anchors_cy], dim=-1)
- def loss_by_feat_single(self, anchors: Tensor, cls_score: Tensor,
- bbox_pred: Tensor, labels: Tensor,
- label_weights: Tensor, bbox_targets: Tensor,
- stride: Tuple[int], avg_factor: int) -> dict:
- """Calculate the loss of a single scale level based on the features
- extracted by the detection head.
- Args:
- anchors (Tensor): Box reference for each scale level with shape
- (N, num_total_anchors, 4).
- cls_score (Tensor): Cls and quality joint scores for each scale
- level has shape (N, num_classes, H, W).
- bbox_pred (Tensor): Box distribution logits for each scale
- level with shape (N, 4*(n+1), H, W), n is max value of integral
- set.
- labels (Tensor): Labels of each anchors with shape
- (N, num_total_anchors).
- label_weights (Tensor): Label weights of each anchor with shape
- (N, num_total_anchors)
- bbox_targets (Tensor): BBox regression targets of each anchor
- weight shape (N, num_total_anchors, 4).
- stride (Tuple[int]): Stride in this scale level.
- avg_factor (int): Average factor that is used to average
- the loss. When using sampling method, avg_factor is usually
- the sum of positive and negative priors. When using
- `PseudoSampler`, `avg_factor` is usually equal to the number
- of positive priors.
- Returns:
- dict[str, Tensor]: A dictionary of loss components.
- """
- assert stride[0] == stride[1], 'h stride is not equal to w stride!'
- anchors = anchors.reshape(-1, 4)
- cls_score = cls_score.permute(0, 2, 3,
- 1).reshape(-1, self.cls_out_channels)
- bbox_pred = bbox_pred.permute(0, 2, 3,
- 1).reshape(-1, 4 * (self.reg_max + 1))
- bbox_targets = bbox_targets.reshape(-1, 4)
- labels = labels.reshape(-1)
- label_weights = label_weights.reshape(-1)
- # FG cat_id: [0, num_classes -1], BG cat_id: num_classes
- bg_class_ind = self.num_classes
- pos_inds = ((labels >= 0)
- & (labels < bg_class_ind)).nonzero().squeeze(1)
- score = label_weights.new_zeros(labels.shape)
- if len(pos_inds) > 0:
- pos_bbox_targets = bbox_targets[pos_inds]
- pos_bbox_pred = bbox_pred[pos_inds]
- pos_anchors = anchors[pos_inds]
- pos_anchor_centers = self.anchor_center(pos_anchors) / stride[0]
- weight_targets = cls_score.detach().sigmoid()
- weight_targets = weight_targets.max(dim=1)[0][pos_inds]
- pos_bbox_pred_corners = self.integral(pos_bbox_pred)
- pos_decode_bbox_pred = self.bbox_coder.decode(
- pos_anchor_centers, pos_bbox_pred_corners)
- pos_decode_bbox_targets = pos_bbox_targets / stride[0]
- score[pos_inds] = bbox_overlaps(
- pos_decode_bbox_pred.detach(),
- pos_decode_bbox_targets,
- is_aligned=True)
- pred_corners = pos_bbox_pred.reshape(-1, self.reg_max + 1)
- target_corners = self.bbox_coder.encode(pos_anchor_centers,
- pos_decode_bbox_targets,
- self.reg_max).reshape(-1)
- # regression loss
- loss_bbox = self.loss_bbox(
- pos_decode_bbox_pred,
- pos_decode_bbox_targets,
- weight=weight_targets,
- avg_factor=1.0)
- # dfl loss
- loss_dfl = self.loss_dfl(
- pred_corners,
- target_corners,
- weight=weight_targets[:, None].expand(-1, 4).reshape(-1),
- avg_factor=4.0)
- else:
- loss_bbox = bbox_pred.sum() * 0
- loss_dfl = bbox_pred.sum() * 0
- weight_targets = bbox_pred.new_tensor(0)
- # cls (qfl) loss
- loss_cls = self.loss_cls(
- cls_score, (labels, score),
- weight=label_weights,
- avg_factor=avg_factor)
- return loss_cls, loss_bbox, loss_dfl, weight_targets.sum()
- def loss_by_feat(
- self,
- cls_scores: List[Tensor],
- bbox_preds: List[Tensor],
- batch_gt_instances: InstanceList,
- batch_img_metas: List[dict],
- batch_gt_instances_ignore: OptInstanceList = None) -> dict:
- """Calculate the loss based on the features extracted by the detection
- head.
- Args:
- cls_scores (list[Tensor]): Cls and quality scores for each scale
- level has shape (N, num_classes, H, W).
- bbox_preds (list[Tensor]): Box distribution logits for each scale
- level with shape (N, 4*(n+1), H, W), n is max value of integral
- set.
- batch_gt_instances (list[:obj:`InstanceData`]): Batch of
- gt_instance. It usually includes ``bboxes`` and ``labels``
- attributes.
- batch_img_metas (list[dict]): Meta information of each image, e.g.,
- image size, scaling factor, etc.
- batch_gt_instances_ignore (list[:obj:`InstanceData`], Optional):
- Batch of gt_instances_ignore. It includes ``bboxes`` attribute
- data that is ignored during training and testing.
- Defaults to None.
- Returns:
- dict[str, Tensor]: A dictionary of loss components.
- """
- featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
- assert len(featmap_sizes) == self.prior_generator.num_levels
- device = cls_scores[0].device
- anchor_list, valid_flag_list = self.get_anchors(
- featmap_sizes, batch_img_metas, device=device)
- cls_reg_targets = self.get_targets(
- anchor_list,
- valid_flag_list,
- batch_gt_instances,
- batch_img_metas,
- batch_gt_instances_ignore=batch_gt_instances_ignore)
- (anchor_list, labels_list, label_weights_list, bbox_targets_list,
- bbox_weights_list, avg_factor) = cls_reg_targets
- avg_factor = reduce_mean(
- torch.tensor(avg_factor, dtype=torch.float, device=device)).item()
- losses_cls, losses_bbox, losses_dfl,\
- avg_factor = multi_apply(
- self.loss_by_feat_single,
- anchor_list,
- cls_scores,
- bbox_preds,
- labels_list,
- label_weights_list,
- bbox_targets_list,
- self.prior_generator.strides,
- avg_factor=avg_factor)
- avg_factor = sum(avg_factor)
- avg_factor = reduce_mean(avg_factor).clamp_(min=1).item()
- losses_bbox = list(map(lambda x: x / avg_factor, losses_bbox))
- losses_dfl = list(map(lambda x: x / avg_factor, losses_dfl))
- return dict(
- loss_cls=losses_cls, loss_bbox=losses_bbox, loss_dfl=losses_dfl)
- def _predict_by_feat_single(self,
- cls_score_list: List[Tensor],
- bbox_pred_list: List[Tensor],
- score_factor_list: List[Tensor],
- mlvl_priors: List[Tensor],
- img_meta: dict,
- cfg: ConfigDict,
- rescale: bool = False,
- with_nms: bool = True) -> InstanceData:
- """Transform a single image's features extracted from the head into
- bbox results.
- Args:
- cls_score_list (list[Tensor]): Box scores from all scale
- levels of a single image, each item has shape
- (num_priors * num_classes, H, W).
- bbox_pred_list (list[Tensor]): Box energies / deltas from
- all scale levels of a single image, each item has shape
- (num_priors * 4, H, W).
- score_factor_list (list[Tensor]): Score factor from all scale
- levels of a single image. GFL head does not need this value.
- mlvl_priors (list[Tensor]): Each element in the list is
- the priors of a single level in feature pyramid, has shape
- (num_priors, 4).
- img_meta (dict): Image meta info.
- cfg (:obj: `ConfigDict`): Test / postprocessing configuration,
- if None, test_cfg would be used.
- rescale (bool): If True, return boxes in original image space.
- Defaults to False.
- with_nms (bool): If True, do nms before return boxes.
- Defaults to True.
- Returns:
- tuple[Tensor]: Results of detected bboxes and labels. If with_nms
- is False and mlvl_score_factor is None, return mlvl_bboxes and
- mlvl_scores, else return mlvl_bboxes, mlvl_scores and
- mlvl_score_factor. Usually with_nms is False is used for aug
- test. If with_nms is True, then return the following format
- - det_bboxes (Tensor): Predicted bboxes with shape
- [num_bboxes, 5], where the first 4 columns are bounding
- box positions (tl_x, tl_y, br_x, br_y) and the 5-th
- column are scores between 0 and 1.
- - det_labels (Tensor): Predicted labels of the corresponding
- box with shape [num_bboxes].
- """
- cfg = self.test_cfg if cfg is None else cfg
- img_shape = img_meta['img_shape']
- nms_pre = cfg.get('nms_pre', -1)
- mlvl_bboxes = []
- mlvl_scores = []
- mlvl_labels = []
- for level_idx, (cls_score, bbox_pred, stride, priors) in enumerate(
- zip(cls_score_list, bbox_pred_list,
- self.prior_generator.strides, mlvl_priors)):
- assert cls_score.size()[-2:] == bbox_pred.size()[-2:]
- assert stride[0] == stride[1]
- bbox_pred = bbox_pred.permute(1, 2, 0)
- bbox_pred = self.integral(bbox_pred) * stride[0]
- scores = cls_score.permute(1, 2, 0).reshape(
- -1, self.cls_out_channels).sigmoid()
- # After https://github.com/open-mmlab/mmdetection/pull/6268/,
- # this operation keeps fewer bboxes under the same `nms_pre`.
- # There is no difference in performance for most models. If you
- # find a slight drop in performance, you can set a larger
- # `nms_pre` than before.
- results = filter_scores_and_topk(
- scores, cfg.score_thr, nms_pre,
- dict(bbox_pred=bbox_pred, priors=priors))
- scores, labels, _, filtered_results = results
- bbox_pred = filtered_results['bbox_pred']
- priors = filtered_results['priors']
- bboxes = self.bbox_coder.decode(
- self.anchor_center(priors), bbox_pred, max_shape=img_shape)
- mlvl_bboxes.append(bboxes)
- mlvl_scores.append(scores)
- mlvl_labels.append(labels)
- results = InstanceData()
- results.bboxes = torch.cat(mlvl_bboxes)
- results.scores = torch.cat(mlvl_scores)
- results.labels = torch.cat(mlvl_labels)
- return self._bbox_post_process(
- results=results,
- cfg=cfg,
- rescale=rescale,
- with_nms=with_nms,
- img_meta=img_meta)
- def get_targets(self,
- anchor_list: List[Tensor],
- valid_flag_list: List[Tensor],
- batch_gt_instances: InstanceList,
- batch_img_metas: List[dict],
- batch_gt_instances_ignore: OptInstanceList = None,
- unmap_outputs=True) -> tuple:
- """Get targets for GFL head.
- This method is almost the same as `AnchorHead.get_targets()`. Besides
- returning the targets as the parent method does, it also returns the
- anchors as the first element of the returned tuple.
- """
- num_imgs = len(batch_img_metas)
- assert len(anchor_list) == len(valid_flag_list) == num_imgs
- # anchor number of multi levels
- num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]]
- num_level_anchors_list = [num_level_anchors] * num_imgs
- # concat all level anchors and flags to a single tensor
- for i in range(num_imgs):
- assert len(anchor_list[i]) == len(valid_flag_list[i])
- anchor_list[i] = torch.cat(anchor_list[i])
- valid_flag_list[i] = torch.cat(valid_flag_list[i])
- # compute targets for each image
- if batch_gt_instances_ignore is None:
- batch_gt_instances_ignore = [None] * num_imgs
- (all_anchors, all_labels, all_label_weights, all_bbox_targets,
- all_bbox_weights, pos_inds_list, neg_inds_list,
- sampling_results_list) = multi_apply(
- self._get_targets_single,
- anchor_list,
- valid_flag_list,
- num_level_anchors_list,
- batch_gt_instances,
- batch_img_metas,
- batch_gt_instances_ignore,
- unmap_outputs=unmap_outputs)
- # Get `avg_factor` of all images, which calculate in `SamplingResult`.
- # When using sampling method, avg_factor is usually the sum of
- # positive and negative priors. When using `PseudoSampler`,
- # `avg_factor` is usually equal to the number of positive priors.
- avg_factor = sum(
- [results.avg_factor for results in sampling_results_list])
- # split targets to a list w.r.t. multiple levels
- anchors_list = images_to_levels(all_anchors, num_level_anchors)
- labels_list = images_to_levels(all_labels, num_level_anchors)
- label_weights_list = images_to_levels(all_label_weights,
- num_level_anchors)
- bbox_targets_list = images_to_levels(all_bbox_targets,
- num_level_anchors)
- bbox_weights_list = images_to_levels(all_bbox_weights,
- num_level_anchors)
- return (anchors_list, labels_list, label_weights_list,
- bbox_targets_list, bbox_weights_list, avg_factor)
- def _get_targets_single(self,
- flat_anchors: Tensor,
- valid_flags: Tensor,
- num_level_anchors: List[int],
- gt_instances: InstanceData,
- img_meta: dict,
- gt_instances_ignore: Optional[InstanceData] = None,
- unmap_outputs: bool = True) -> tuple:
- """Compute regression, classification targets for anchors in a single
- image.
- Args:
- flat_anchors (Tensor): Multi-level anchors of the image, which are
- concatenated into a single tensor of shape (num_anchors, 4)
- valid_flags (Tensor): Multi level valid flags of the image,
- which are concatenated into a single tensor of
- shape (num_anchors,).
- num_level_anchors (list[int]): Number of anchors of each scale
- level.
- gt_instances (:obj:`InstanceData`): Ground truth of instance
- annotations. It usually includes ``bboxes`` and ``labels``
- attributes.
- img_meta (dict): Meta information for current image.
- gt_instances_ignore (:obj:`InstanceData`, optional): Instances
- to be ignored during training. It includes ``bboxes`` attribute
- data that is ignored during training and testing.
- Defaults to None.
- unmap_outputs (bool): Whether to map outputs back to the original
- set of anchors. Defaults to True.
- Returns:
- tuple: N is the number of total anchors in the image.
- - anchors (Tensor): All anchors in the image with shape (N, 4).
- - labels (Tensor): Labels of all anchors in the image with
- shape (N,).
- - label_weights (Tensor): Label weights of all anchor in the
- image with shape (N,).
- - bbox_targets (Tensor): BBox targets of all anchors in the
- image with shape (N, 4).
- - bbox_weights (Tensor): BBox weights of all anchors in the
- image with shape (N, 4).
- - pos_inds (Tensor): Indices of positive anchor with shape
- (num_pos,).
- - neg_inds (Tensor): Indices of negative anchor with shape
- (num_neg,).
- - sampling_result (:obj:`SamplingResult`): Sampling results.
- """
- inside_flags = anchor_inside_flags(flat_anchors, valid_flags,
- img_meta['img_shape'][:2],
- self.train_cfg['allowed_border'])
- if not inside_flags.any():
- raise ValueError(
- 'There is no valid anchor inside the image boundary. Please '
- 'check the image size and anchor sizes, or set '
- '``allowed_border`` to -1 to skip the condition.')
- # assign gt and sample anchors
- anchors = flat_anchors[inside_flags, :]
- num_level_anchors_inside = self.get_num_level_anchors_inside(
- num_level_anchors, inside_flags)
- pred_instances = InstanceData(priors=anchors)
- assign_result = self.assigner.assign(
- pred_instances=pred_instances,
- num_level_priors=num_level_anchors_inside,
- gt_instances=gt_instances,
- gt_instances_ignore=gt_instances_ignore)
- sampling_result = self.sampler.sample(
- assign_result=assign_result,
- pred_instances=pred_instances,
- gt_instances=gt_instances)
- num_valid_anchors = anchors.shape[0]
- bbox_targets = torch.zeros_like(anchors)
- bbox_weights = torch.zeros_like(anchors)
- labels = anchors.new_full((num_valid_anchors, ),
- self.num_classes,
- dtype=torch.long)
- label_weights = anchors.new_zeros(num_valid_anchors, dtype=torch.float)
- pos_inds = sampling_result.pos_inds
- neg_inds = sampling_result.neg_inds
- if len(pos_inds) > 0:
- pos_bbox_targets = sampling_result.pos_gt_bboxes
- bbox_targets[pos_inds, :] = pos_bbox_targets
- bbox_weights[pos_inds, :] = 1.0
- labels[pos_inds] = sampling_result.pos_gt_labels
- if self.train_cfg['pos_weight'] <= 0:
- label_weights[pos_inds] = 1.0
- else:
- label_weights[pos_inds] = self.train_cfg['pos_weight']
- if len(neg_inds) > 0:
- label_weights[neg_inds] = 1.0
- # map up to original set of anchors
- if unmap_outputs:
- num_total_anchors = flat_anchors.size(0)
- anchors = unmap(anchors, num_total_anchors, inside_flags)
- labels = unmap(
- labels, num_total_anchors, inside_flags, fill=self.num_classes)
- label_weights = unmap(label_weights, num_total_anchors,
- inside_flags)
- bbox_targets = unmap(bbox_targets, num_total_anchors, inside_flags)
- bbox_weights = unmap(bbox_weights, num_total_anchors, inside_flags)
- return (anchors, labels, label_weights, bbox_targets, bbox_weights,
- pos_inds, neg_inds, sampling_result)
- def get_num_level_anchors_inside(self, num_level_anchors: List[int],
- inside_flags: Tensor) -> List[int]:
- """Get the number of valid anchors in every level."""
- split_inside_flags = torch.split(inside_flags, num_level_anchors)
- num_level_anchors_inside = [
- int(flags.sum()) for flags in split_inside_flags
- ]
- return num_level_anchors_inside
|