123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312 |
- # Copyright (c) OpenMMLab. All rights reserved.
- from typing import List
- import torch
- import torch.nn.functional as F
- from mmengine.structures import InstanceData
- from torch import Tensor
- from mmdet.registry import MODELS
- from mmdet.structures.bbox import bbox_overlaps
- from mmdet.utils import InstanceList, OptConfigType, OptInstanceList
- from ..utils import multi_apply
- from .retina_head import RetinaHead
- EPS = 1e-12
- @MODELS.register_module()
- class FreeAnchorRetinaHead(RetinaHead):
- """FreeAnchor RetinaHead used in https://arxiv.org/abs/1909.02466.
- Args:
- num_classes (int): Number of categories excluding the background
- category.
- in_channels (int): Number of channels in the input feature map.
- stacked_convs (int): Number of conv layers in cls and reg tower.
- Defaults to 4.
- conv_cfg (:obj:`ConfigDict` or dict, optional): dictionary to
- construct and config conv layer. Defaults to None.
- norm_cfg (:obj:`ConfigDict` or dict, optional): dictionary to
- construct and config norm layer. Defaults to
- norm_cfg=dict(type='GN', num_groups=32, requires_grad=True).
- pre_anchor_topk (int): Number of boxes that be token in each bag.
- Defaults to 50
- bbox_thr (float): The threshold of the saturated linear function.
- It is usually the same with the IoU threshold used in NMS.
- Defaults to 0.6.
- gamma (float): Gamma parameter in focal loss. Defaults to 2.0.
- alpha (float): Alpha parameter in focal loss. Defaults to 0.5.
- """
- def __init__(self,
- num_classes: int,
- in_channels: int,
- stacked_convs: int = 4,
- conv_cfg: OptConfigType = None,
- norm_cfg: OptConfigType = None,
- pre_anchor_topk: int = 50,
- bbox_thr: float = 0.6,
- gamma: float = 2.0,
- alpha: float = 0.5,
- **kwargs) -> None:
- super().__init__(
- num_classes=num_classes,
- in_channels=in_channels,
- stacked_convs=stacked_convs,
- conv_cfg=conv_cfg,
- norm_cfg=norm_cfg,
- **kwargs)
- self.pre_anchor_topk = pre_anchor_topk
- self.bbox_thr = bbox_thr
- self.gamma = gamma
- self.alpha = alpha
- def loss_by_feat(
- self,
- cls_scores: List[Tensor],
- bbox_preds: List[Tensor],
- batch_gt_instances: InstanceList,
- batch_img_metas: List[dict],
- batch_gt_instances_ignore: OptInstanceList = None) -> dict:
- """Calculate the loss based on the features extracted by the detection
- head.
- Args:
- cls_scores (list[Tensor]): Box scores for each scale level
- has shape (N, num_anchors * num_classes, H, W).
- bbox_preds (list[Tensor]): Box energies / deltas for each scale
- level with shape (N, num_anchors * 4, H, W).
- batch_gt_instances (list[:obj:`InstanceData`]): Batch of
- gt_instance. It usually includes ``bboxes`` and ``labels``
- attributes.
- batch_img_metas (list[dict]): Meta information of each image, e.g.,
- image size, scaling factor, etc.
- batch_gt_instances_ignore (list[:obj:`InstanceData`], optional):
- Batch of gt_instances_ignore. It includes ``bboxes`` attribute
- data that is ignored during training and testing.
- Defaults to None.
- Returns:
- dict: A dictionary of loss components.
- """
- featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
- assert len(featmap_sizes) == self.prior_generator.num_levels
- device = cls_scores[0].device
- anchor_list, _ = self.get_anchors(
- featmap_sizes=featmap_sizes,
- batch_img_metas=batch_img_metas,
- device=device)
- concat_anchor_list = [torch.cat(anchor) for anchor in anchor_list]
- # concatenate each level
- cls_scores = [
- cls.permute(0, 2, 3,
- 1).reshape(cls.size(0), -1, self.cls_out_channels)
- for cls in cls_scores
- ]
- bbox_preds = [
- bbox_pred.permute(0, 2, 3, 1).reshape(bbox_pred.size(0), -1, 4)
- for bbox_pred in bbox_preds
- ]
- cls_scores = torch.cat(cls_scores, dim=1)
- cls_probs = torch.sigmoid(cls_scores)
- bbox_preds = torch.cat(bbox_preds, dim=1)
- box_probs, positive_losses, num_pos_list = multi_apply(
- self.positive_loss_single, cls_probs, bbox_preds,
- concat_anchor_list, batch_gt_instances)
- num_pos = sum(num_pos_list)
- positive_loss = torch.cat(positive_losses).sum() / max(1, num_pos)
- # box_prob: P{a_{j} \in A_{+}}
- box_probs = torch.stack(box_probs, dim=0)
- # negative_loss:
- # \sum_{j}{ FL((1 - P{a_{j} \in A_{+}}) * (1 - P_{j}^{bg})) } / n||B||
- negative_loss = self.negative_bag_loss(cls_probs, box_probs).sum() / \
- max(1, num_pos * self.pre_anchor_topk)
- # avoid the absence of gradients in regression subnet
- # when no ground-truth in a batch
- if num_pos == 0:
- positive_loss = bbox_preds.sum() * 0
- losses = {
- 'positive_bag_loss': positive_loss,
- 'negative_bag_loss': negative_loss
- }
- return losses
- def positive_loss_single(self, cls_prob: Tensor, bbox_pred: Tensor,
- flat_anchors: Tensor,
- gt_instances: InstanceData) -> tuple:
- """Compute positive loss.
- Args:
- cls_prob (Tensor): Classification probability of shape
- (num_anchors, num_classes).
- bbox_pred (Tensor): Box probability of shape (num_anchors, 4).
- flat_anchors (Tensor): Multi-level anchors of the image, which are
- concatenated into a single tensor of shape (num_anchors, 4)
- gt_instances (:obj:`InstanceData`): Ground truth of instance
- annotations. It should includes ``bboxes`` and ``labels``
- attributes.
- Returns:
- tuple:
- - box_prob (Tensor): Box probability of shape (num_anchors, 4).
- - positive_loss (Tensor): Positive loss of shape (num_pos, ).
- - num_pos (int): positive samples indexes.
- """
- gt_bboxes = gt_instances.bboxes
- gt_labels = gt_instances.labels
- with torch.no_grad():
- if len(gt_bboxes) == 0:
- image_box_prob = torch.zeros(
- flat_anchors.size(0),
- self.cls_out_channels).type_as(bbox_pred)
- else:
- # box_localization: a_{j}^{loc}, shape: [j, 4]
- pred_boxes = self.bbox_coder.decode(flat_anchors, bbox_pred)
- # object_box_iou: IoU_{ij}^{loc}, shape: [i, j]
- object_box_iou = bbox_overlaps(gt_bboxes, pred_boxes)
- # object_box_prob: P{a_{j} -> b_{i}}, shape: [i, j]
- t1 = self.bbox_thr
- t2 = object_box_iou.max(
- dim=1, keepdim=True).values.clamp(min=t1 + 1e-12)
- object_box_prob = ((object_box_iou - t1) / (t2 - t1)).clamp(
- min=0, max=1)
- # object_cls_box_prob: P{a_{j} -> b_{i}}, shape: [i, c, j]
- num_obj = gt_labels.size(0)
- indices = torch.stack(
- [torch.arange(num_obj).type_as(gt_labels), gt_labels],
- dim=0)
- object_cls_box_prob = torch.sparse_coo_tensor(
- indices, object_box_prob)
- # image_box_iou: P{a_{j} \in A_{+}}, shape: [c, j]
- """
- from "start" to "end" implement:
- image_box_iou = torch.sparse.max(object_cls_box_prob,
- dim=0).t()
- """
- # start
- box_cls_prob = torch.sparse.sum(
- object_cls_box_prob, dim=0).to_dense()
- indices = torch.nonzero(box_cls_prob, as_tuple=False).t_()
- if indices.numel() == 0:
- image_box_prob = torch.zeros(
- flat_anchors.size(0),
- self.cls_out_channels).type_as(object_box_prob)
- else:
- nonzero_box_prob = torch.where(
- (gt_labels.unsqueeze(dim=-1) == indices[0]),
- object_box_prob[:, indices[1]],
- torch.tensor(
- [0]).type_as(object_box_prob)).max(dim=0).values
- # upmap to shape [j, c]
- image_box_prob = torch.sparse_coo_tensor(
- indices.flip([0]),
- nonzero_box_prob,
- size=(flat_anchors.size(0),
- self.cls_out_channels)).to_dense()
- # end
- box_prob = image_box_prob
- # construct bags for objects
- match_quality_matrix = bbox_overlaps(gt_bboxes, flat_anchors)
- _, matched = torch.topk(
- match_quality_matrix, self.pre_anchor_topk, dim=1, sorted=False)
- del match_quality_matrix
- # matched_cls_prob: P_{ij}^{cls}
- matched_cls_prob = torch.gather(
- cls_prob[matched], 2,
- gt_labels.view(-1, 1, 1).repeat(1, self.pre_anchor_topk,
- 1)).squeeze(2)
- # matched_box_prob: P_{ij}^{loc}
- matched_anchors = flat_anchors[matched]
- matched_object_targets = self.bbox_coder.encode(
- matched_anchors,
- gt_bboxes.unsqueeze(dim=1).expand_as(matched_anchors))
- loss_bbox = self.loss_bbox(
- bbox_pred[matched],
- matched_object_targets,
- reduction_override='none').sum(-1)
- matched_box_prob = torch.exp(-loss_bbox)
- # positive_losses: {-log( Mean-max(P_{ij}^{cls} * P_{ij}^{loc}) )}
- num_pos = len(gt_bboxes)
- positive_loss = self.positive_bag_loss(matched_cls_prob,
- matched_box_prob)
- return box_prob, positive_loss, num_pos
- def positive_bag_loss(self, matched_cls_prob: Tensor,
- matched_box_prob: Tensor) -> Tensor:
- """Compute positive bag loss.
- :math:`-log( Mean-max(P_{ij}^{cls} * P_{ij}^{loc}) )`.
- :math:`P_{ij}^{cls}`: matched_cls_prob, classification probability of matched samples.
- :math:`P_{ij}^{loc}`: matched_box_prob, box probability of matched samples.
- Args:
- matched_cls_prob (Tensor): Classification probability of matched
- samples in shape (num_gt, pre_anchor_topk).
- matched_box_prob (Tensor): BBox probability of matched samples,
- in shape (num_gt, pre_anchor_topk).
- Returns:
- Tensor: Positive bag loss in shape (num_gt,).
- """ # noqa: E501, W605
- # bag_prob = Mean-max(matched_prob)
- matched_prob = matched_cls_prob * matched_box_prob
- weight = 1 / torch.clamp(1 - matched_prob, 1e-12, None)
- weight /= weight.sum(dim=1).unsqueeze(dim=-1)
- bag_prob = (weight * matched_prob).sum(dim=1)
- # positive_bag_loss = -self.alpha * log(bag_prob)
- return self.alpha * F.binary_cross_entropy(
- bag_prob, torch.ones_like(bag_prob), reduction='none')
- def negative_bag_loss(self, cls_prob: Tensor, box_prob: Tensor) -> Tensor:
- """Compute negative bag loss.
- :math:`FL((1 - P_{a_{j} \in A_{+}}) * (1 - P_{j}^{bg}))`.
- :math:`P_{a_{j} \in A_{+}}`: Box_probability of matched samples.
- :math:`P_{j}^{bg}`: Classification probability of negative samples.
- Args:
- cls_prob (Tensor): Classification probability, in shape
- (num_img, num_anchors, num_classes).
- box_prob (Tensor): Box probability, in shape
- (num_img, num_anchors, num_classes).
- Returns:
- Tensor: Negative bag loss in shape (num_img, num_anchors,
- num_classes).
- """ # noqa: E501, W605
- prob = cls_prob * (1 - box_prob)
- # There are some cases when neg_prob = 0.
- # This will cause the neg_prob.log() to be inf without clamp.
- prob = prob.clamp(min=EPS, max=1 - EPS)
- negative_bag_loss = prob**self.gamma * F.binary_cross_entropy(
- prob, torch.zeros_like(prob), reduction='none')
- return (1 - self.alpha) * negative_bag_loss
|