123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455 |
- # Copyright (c) OpenMMLab. All rights reserved.
- from typing import Dict, List, Tuple
- import torch
- import torch.nn as nn
- from mmcv.cnn import Scale
- from mmengine.structures import InstanceData
- from torch import Tensor
- from mmdet.registry import MODELS
- from mmdet.utils import (ConfigType, InstanceList, MultiConfig,
- OptInstanceList, RangeType, reduce_mean)
- from ..utils import multi_apply
- from .anchor_free_head import AnchorFreeHead
- INF = 1e8
- @MODELS.register_module()
- class FCOSHead(AnchorFreeHead):
- """Anchor-free head used in `FCOS <https://arxiv.org/abs/1904.01355>`_.
- The FCOS head does not use anchor boxes. Instead bounding boxes are
- predicted at each pixel and a centerness measure is used to suppress
- low-quality predictions.
- Here norm_on_bbox, centerness_on_reg, dcn_on_last_conv are training
- tricks used in official repo, which will bring remarkable mAP gains
- of up to 4.9. Please see https://github.com/tianzhi0549/FCOS for
- more detail.
- Args:
- num_classes (int): Number of categories excluding the background
- category.
- in_channels (int): Number of channels in the input feature map.
- strides (Sequence[int] or Sequence[Tuple[int, int]]): Strides of points
- in multiple feature levels. Defaults to (4, 8, 16, 32, 64).
- regress_ranges (Sequence[Tuple[int, int]]): Regress range of multiple
- level points.
- center_sampling (bool): If true, use center sampling.
- Defaults to False.
- center_sample_radius (float): Radius of center sampling.
- Defaults to 1.5.
- norm_on_bbox (bool): If true, normalize the regression targets with
- FPN strides. Defaults to False.
- centerness_on_reg (bool): If true, position centerness on the
- regress branch. Please refer to https://github.com/tianzhi0549/FCOS/issues/89#issuecomment-516877042.
- Defaults to False.
- conv_bias (bool or str): If specified as `auto`, it will be decided by
- the norm_cfg. Bias of conv will be set as True if `norm_cfg` is
- None, otherwise False. Defaults to "auto".
- loss_cls (:obj:`ConfigDict` or dict): Config of classification loss.
- loss_bbox (:obj:`ConfigDict` or dict): Config of localization loss.
- loss_centerness (:obj:`ConfigDict`, or dict): Config of centerness
- loss.
- norm_cfg (:obj:`ConfigDict` or dict): dictionary to construct and
- config norm layer. Defaults to
- ``norm_cfg=dict(type='GN', num_groups=32, requires_grad=True)``.
- init_cfg (:obj:`ConfigDict` or dict or list[:obj:`ConfigDict` or \
- dict]): Initialization config dict.
- Example:
- >>> self = FCOSHead(11, 7)
- >>> feats = [torch.rand(1, 7, s, s) for s in [4, 8, 16, 32, 64]]
- >>> cls_score, bbox_pred, centerness = self.forward(feats)
- >>> assert len(cls_score) == len(self.scales)
- """ # noqa: E501
- def __init__(self,
- num_classes: int,
- in_channels: int,
- regress_ranges: RangeType = ((-1, 64), (64, 128), (128, 256),
- (256, 512), (512, INF)),
- center_sampling: bool = False,
- center_sample_radius: float = 1.5,
- norm_on_bbox: bool = False,
- centerness_on_reg: bool = False,
- loss_cls: ConfigType = dict(
- type='FocalLoss',
- use_sigmoid=True,
- gamma=2.0,
- alpha=0.25,
- loss_weight=1.0),
- loss_bbox: ConfigType = dict(type='IoULoss', loss_weight=1.0),
- loss_centerness: ConfigType = dict(
- type='CrossEntropyLoss',
- use_sigmoid=True,
- loss_weight=1.0),
- norm_cfg: ConfigType = dict(
- type='GN', num_groups=32, requires_grad=True),
- init_cfg: MultiConfig = dict(
- type='Normal',
- layer='Conv2d',
- std=0.01,
- override=dict(
- type='Normal',
- name='conv_cls',
- std=0.01,
- bias_prob=0.01)),
- **kwargs) -> None:
- self.regress_ranges = regress_ranges
- self.center_sampling = center_sampling
- self.center_sample_radius = center_sample_radius
- self.norm_on_bbox = norm_on_bbox
- self.centerness_on_reg = centerness_on_reg
- super().__init__(
- num_classes=num_classes,
- in_channels=in_channels,
- loss_cls=loss_cls,
- loss_bbox=loss_bbox,
- norm_cfg=norm_cfg,
- init_cfg=init_cfg,
- **kwargs)
- self.loss_centerness = MODELS.build(loss_centerness)
- def _init_layers(self) -> None:
- """Initialize layers of the head."""
- super()._init_layers()
- self.conv_centerness = nn.Conv2d(self.feat_channels, 1, 3, padding=1)
- self.scales = nn.ModuleList([Scale(1.0) for _ in self.strides])
- def forward(
- self, x: Tuple[Tensor]
- ) -> Tuple[List[Tensor], List[Tensor], List[Tensor]]:
- """Forward features from the upstream network.
- Args:
- feats (tuple[Tensor]): Features from the upstream network, each is
- a 4D-tensor.
- Returns:
- tuple: A tuple of each level outputs.
- - cls_scores (list[Tensor]): Box scores for each scale level, \
- each is a 4D-tensor, the channel number is \
- num_points * num_classes.
- - bbox_preds (list[Tensor]): Box energies / deltas for each \
- scale level, each is a 4D-tensor, the channel number is \
- num_points * 4.
- - centernesses (list[Tensor]): centerness for each scale level, \
- each is a 4D-tensor, the channel number is num_points * 1.
- """
- return multi_apply(self.forward_single, x, self.scales, self.strides)
- def forward_single(self, x: Tensor, scale: Scale,
- stride: int) -> Tuple[Tensor, Tensor, Tensor]:
- """Forward features of a single scale level.
- Args:
- x (Tensor): FPN feature maps of the specified stride.
- scale (:obj:`mmcv.cnn.Scale`): Learnable scale module to resize
- the bbox prediction.
- stride (int): The corresponding stride for feature maps, only
- used to normalize the bbox prediction when self.norm_on_bbox
- is True.
- Returns:
- tuple: scores for each class, bbox predictions and centerness
- predictions of input feature maps.
- """
- cls_score, bbox_pred, cls_feat, reg_feat = super().forward_single(x)
- if self.centerness_on_reg:
- centerness = self.conv_centerness(reg_feat)
- else:
- centerness = self.conv_centerness(cls_feat)
- # scale the bbox_pred of different level
- # float to avoid overflow when enabling FP16
- bbox_pred = scale(bbox_pred).float()
- if self.norm_on_bbox:
- # bbox_pred needed for gradient computation has been modified
- # by F.relu(bbox_pred) when run with PyTorch 1.10. So replace
- # F.relu(bbox_pred) with bbox_pred.clamp(min=0)
- bbox_pred = bbox_pred.clamp(min=0)
- if not self.training:
- bbox_pred *= stride
- else:
- bbox_pred = bbox_pred.exp()
- return cls_score, bbox_pred, centerness
- def loss_by_feat(
- self,
- cls_scores: List[Tensor],
- bbox_preds: List[Tensor],
- centernesses: List[Tensor],
- batch_gt_instances: InstanceList,
- batch_img_metas: List[dict],
- batch_gt_instances_ignore: OptInstanceList = None
- ) -> Dict[str, Tensor]:
- """Calculate the loss based on the features extracted by the detection
- head.
- Args:
- cls_scores (list[Tensor]): Box scores for each scale level,
- each is a 4D-tensor, the channel number is
- num_points * num_classes.
- bbox_preds (list[Tensor]): Box energies / deltas for each scale
- level, each is a 4D-tensor, the channel number is
- num_points * 4.
- centernesses (list[Tensor]): centerness for each scale level, each
- is a 4D-tensor, the channel number is num_points * 1.
- batch_gt_instances (list[:obj:`InstanceData`]): Batch of
- gt_instance. It usually includes ``bboxes`` and ``labels``
- attributes.
- batch_img_metas (list[dict]): Meta information of each image, e.g.,
- image size, scaling factor, etc.
- batch_gt_instances_ignore (list[:obj:`InstanceData`], Optional):
- Batch of gt_instances_ignore. It includes ``bboxes`` attribute
- data that is ignored during training and testing.
- Defaults to None.
- Returns:
- dict[str, Tensor]: A dictionary of loss components.
- """
- assert len(cls_scores) == len(bbox_preds) == len(centernesses)
- featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
- all_level_points = self.prior_generator.grid_priors(
- featmap_sizes,
- dtype=bbox_preds[0].dtype,
- device=bbox_preds[0].device)
- labels, bbox_targets = self.get_targets(all_level_points,
- batch_gt_instances)
- num_imgs = cls_scores[0].size(0)
- # flatten cls_scores, bbox_preds and centerness
- flatten_cls_scores = [
- cls_score.permute(0, 2, 3, 1).reshape(-1, self.cls_out_channels)
- for cls_score in cls_scores
- ]
- flatten_bbox_preds = [
- bbox_pred.permute(0, 2, 3, 1).reshape(-1, 4)
- for bbox_pred in bbox_preds
- ]
- flatten_centerness = [
- centerness.permute(0, 2, 3, 1).reshape(-1)
- for centerness in centernesses
- ]
- flatten_cls_scores = torch.cat(flatten_cls_scores)
- flatten_bbox_preds = torch.cat(flatten_bbox_preds)
- flatten_centerness = torch.cat(flatten_centerness)
- flatten_labels = torch.cat(labels)
- flatten_bbox_targets = torch.cat(bbox_targets)
- # repeat points to align with bbox_preds
- flatten_points = torch.cat(
- [points.repeat(num_imgs, 1) for points in all_level_points])
- # FG cat_id: [0, num_classes -1], BG cat_id: num_classes
- bg_class_ind = self.num_classes
- pos_inds = ((flatten_labels >= 0)
- & (flatten_labels < bg_class_ind)).nonzero().reshape(-1)
- num_pos = torch.tensor(
- len(pos_inds), dtype=torch.float, device=bbox_preds[0].device)
- num_pos = max(reduce_mean(num_pos), 1.0)
- loss_cls = self.loss_cls(
- flatten_cls_scores, flatten_labels, avg_factor=num_pos)
- pos_bbox_preds = flatten_bbox_preds[pos_inds]
- pos_centerness = flatten_centerness[pos_inds]
- pos_bbox_targets = flatten_bbox_targets[pos_inds]
- pos_centerness_targets = self.centerness_target(pos_bbox_targets)
- # centerness weighted iou loss
- centerness_denorm = max(
- reduce_mean(pos_centerness_targets.sum().detach()), 1e-6)
- if len(pos_inds) > 0:
- pos_points = flatten_points[pos_inds]
- pos_decoded_bbox_preds = self.bbox_coder.decode(
- pos_points, pos_bbox_preds)
- pos_decoded_target_preds = self.bbox_coder.decode(
- pos_points, pos_bbox_targets)
- loss_bbox = self.loss_bbox(
- pos_decoded_bbox_preds,
- pos_decoded_target_preds,
- weight=pos_centerness_targets,
- avg_factor=centerness_denorm)
- loss_centerness = self.loss_centerness(
- pos_centerness, pos_centerness_targets, avg_factor=num_pos)
- else:
- loss_bbox = pos_bbox_preds.sum()
- loss_centerness = pos_centerness.sum()
- return dict(
- loss_cls=loss_cls,
- loss_bbox=loss_bbox,
- loss_centerness=loss_centerness)
- def get_targets(
- self, points: List[Tensor], batch_gt_instances: InstanceList
- ) -> Tuple[List[Tensor], List[Tensor]]:
- """Compute regression, classification and centerness targets for points
- in multiple images.
- Args:
- points (list[Tensor]): Points of each fpn level, each has shape
- (num_points, 2).
- batch_gt_instances (list[:obj:`InstanceData`]): Batch of
- gt_instance. It usually includes ``bboxes`` and ``labels``
- attributes.
- Returns:
- tuple: Targets of each level.
- - concat_lvl_labels (list[Tensor]): Labels of each level.
- - concat_lvl_bbox_targets (list[Tensor]): BBox targets of each \
- level.
- """
- assert len(points) == len(self.regress_ranges)
- num_levels = len(points)
- # expand regress ranges to align with points
- expanded_regress_ranges = [
- points[i].new_tensor(self.regress_ranges[i])[None].expand_as(
- points[i]) for i in range(num_levels)
- ]
- # concat all levels points and regress ranges
- concat_regress_ranges = torch.cat(expanded_regress_ranges, dim=0)
- concat_points = torch.cat(points, dim=0)
- # the number of points per img, per lvl
- num_points = [center.size(0) for center in points]
- # get labels and bbox_targets of each image
- labels_list, bbox_targets_list = multi_apply(
- self._get_targets_single,
- batch_gt_instances,
- points=concat_points,
- regress_ranges=concat_regress_ranges,
- num_points_per_lvl=num_points)
- # split to per img, per level
- labels_list = [labels.split(num_points, 0) for labels in labels_list]
- bbox_targets_list = [
- bbox_targets.split(num_points, 0)
- for bbox_targets in bbox_targets_list
- ]
- # concat per level image
- concat_lvl_labels = []
- concat_lvl_bbox_targets = []
- for i in range(num_levels):
- concat_lvl_labels.append(
- torch.cat([labels[i] for labels in labels_list]))
- bbox_targets = torch.cat(
- [bbox_targets[i] for bbox_targets in bbox_targets_list])
- if self.norm_on_bbox:
- bbox_targets = bbox_targets / self.strides[i]
- concat_lvl_bbox_targets.append(bbox_targets)
- return concat_lvl_labels, concat_lvl_bbox_targets
- def _get_targets_single(
- self, gt_instances: InstanceData, points: Tensor,
- regress_ranges: Tensor,
- num_points_per_lvl: List[int]) -> Tuple[Tensor, Tensor]:
- """Compute regression and classification targets for a single image."""
- num_points = points.size(0)
- num_gts = len(gt_instances)
- gt_bboxes = gt_instances.bboxes
- gt_labels = gt_instances.labels
- if num_gts == 0:
- return gt_labels.new_full((num_points,), self.num_classes), \
- gt_bboxes.new_zeros((num_points, 4))
- areas = (gt_bboxes[:, 2] - gt_bboxes[:, 0]) * (
- gt_bboxes[:, 3] - gt_bboxes[:, 1])
- # TODO: figure out why these two are different
- # areas = areas[None].expand(num_points, num_gts)
- areas = areas[None].repeat(num_points, 1)
- regress_ranges = regress_ranges[:, None, :].expand(
- num_points, num_gts, 2)
- gt_bboxes = gt_bboxes[None].expand(num_points, num_gts, 4)
- xs, ys = points[:, 0], points[:, 1]
- xs = xs[:, None].expand(num_points, num_gts)
- ys = ys[:, None].expand(num_points, num_gts)
- left = xs - gt_bboxes[..., 0]
- right = gt_bboxes[..., 2] - xs
- top = ys - gt_bboxes[..., 1]
- bottom = gt_bboxes[..., 3] - ys
- bbox_targets = torch.stack((left, top, right, bottom), -1)
- if self.center_sampling:
- # condition1: inside a `center bbox`
- radius = self.center_sample_radius
- center_xs = (gt_bboxes[..., 0] + gt_bboxes[..., 2]) / 2
- center_ys = (gt_bboxes[..., 1] + gt_bboxes[..., 3]) / 2
- center_gts = torch.zeros_like(gt_bboxes)
- stride = center_xs.new_zeros(center_xs.shape)
- # project the points on current lvl back to the `original` sizes
- lvl_begin = 0
- for lvl_idx, num_points_lvl in enumerate(num_points_per_lvl):
- lvl_end = lvl_begin + num_points_lvl
- stride[lvl_begin:lvl_end] = self.strides[lvl_idx] * radius
- lvl_begin = lvl_end
- x_mins = center_xs - stride
- y_mins = center_ys - stride
- x_maxs = center_xs + stride
- y_maxs = center_ys + stride
- center_gts[..., 0] = torch.where(x_mins > gt_bboxes[..., 0],
- x_mins, gt_bboxes[..., 0])
- center_gts[..., 1] = torch.where(y_mins > gt_bboxes[..., 1],
- y_mins, gt_bboxes[..., 1])
- center_gts[..., 2] = torch.where(x_maxs > gt_bboxes[..., 2],
- gt_bboxes[..., 2], x_maxs)
- center_gts[..., 3] = torch.where(y_maxs > gt_bboxes[..., 3],
- gt_bboxes[..., 3], y_maxs)
- cb_dist_left = xs - center_gts[..., 0]
- cb_dist_right = center_gts[..., 2] - xs
- cb_dist_top = ys - center_gts[..., 1]
- cb_dist_bottom = center_gts[..., 3] - ys
- center_bbox = torch.stack(
- (cb_dist_left, cb_dist_top, cb_dist_right, cb_dist_bottom), -1)
- inside_gt_bbox_mask = center_bbox.min(-1)[0] > 0
- else:
- # condition1: inside a gt bbox
- inside_gt_bbox_mask = bbox_targets.min(-1)[0] > 0
- # condition2: limit the regression range for each location
- max_regress_distance = bbox_targets.max(-1)[0]
- inside_regress_range = (
- (max_regress_distance >= regress_ranges[..., 0])
- & (max_regress_distance <= regress_ranges[..., 1]))
- # if there are still more than one objects for a location,
- # we choose the one with minimal area
- areas[inside_gt_bbox_mask == 0] = INF
- areas[inside_regress_range == 0] = INF
- min_area, min_area_inds = areas.min(dim=1)
- labels = gt_labels[min_area_inds]
- labels[min_area == INF] = self.num_classes # set as BG
- bbox_targets = bbox_targets[range(num_points), min_area_inds]
- return labels, bbox_targets
- def centerness_target(self, pos_bbox_targets: Tensor) -> Tensor:
- """Compute centerness targets.
- Args:
- pos_bbox_targets (Tensor): BBox targets of positive bboxes in shape
- (num_pos, 4)
- Returns:
- Tensor: Centerness target.
- """
- # only calculate pos centerness targets, otherwise there may be nan
- left_right = pos_bbox_targets[:, [0, 2]]
- top_bottom = pos_bbox_targets[:, [1, 3]]
- if len(left_right) == 0:
- centerness_targets = left_right[..., 0]
- else:
- centerness_targets = (
- left_right.min(dim=-1)[0] / left_right.max(dim=-1)[0]) * (
- top_bottom.min(dim=-1)[0] / top_bottom.max(dim=-1)[0])
- return torch.sqrt(centerness_targets)
|