123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154 |
- # Copyright (c) OpenMMLab. All rights reserved.
- import math
- from mmcv.cnn import build_conv_layer, build_norm_layer
- from mmdet.registry import MODELS
- from ..layers import ResLayer
- from .resnet import Bottleneck as _Bottleneck
- from .resnet import ResNet
- class Bottleneck(_Bottleneck):
- expansion = 4
- def __init__(self,
- inplanes,
- planes,
- groups=1,
- base_width=4,
- base_channels=64,
- **kwargs):
- """Bottleneck block for ResNeXt.
- If style is "pytorch", the stride-two layer is the 3x3 conv layer, if
- it is "caffe", the stride-two layer is the first 1x1 conv layer.
- """
- super(Bottleneck, self).__init__(inplanes, planes, **kwargs)
- if groups == 1:
- width = self.planes
- else:
- width = math.floor(self.planes *
- (base_width / base_channels)) * groups
- self.norm1_name, norm1 = build_norm_layer(
- self.norm_cfg, width, postfix=1)
- self.norm2_name, norm2 = build_norm_layer(
- self.norm_cfg, width, postfix=2)
- self.norm3_name, norm3 = build_norm_layer(
- self.norm_cfg, self.planes * self.expansion, postfix=3)
- self.conv1 = build_conv_layer(
- self.conv_cfg,
- self.inplanes,
- width,
- kernel_size=1,
- stride=self.conv1_stride,
- bias=False)
- self.add_module(self.norm1_name, norm1)
- fallback_on_stride = False
- self.with_modulated_dcn = False
- if self.with_dcn:
- fallback_on_stride = self.dcn.pop('fallback_on_stride', False)
- if not self.with_dcn or fallback_on_stride:
- self.conv2 = build_conv_layer(
- self.conv_cfg,
- width,
- width,
- kernel_size=3,
- stride=self.conv2_stride,
- padding=self.dilation,
- dilation=self.dilation,
- groups=groups,
- bias=False)
- else:
- assert self.conv_cfg is None, 'conv_cfg must be None for DCN'
- self.conv2 = build_conv_layer(
- self.dcn,
- width,
- width,
- kernel_size=3,
- stride=self.conv2_stride,
- padding=self.dilation,
- dilation=self.dilation,
- groups=groups,
- bias=False)
- self.add_module(self.norm2_name, norm2)
- self.conv3 = build_conv_layer(
- self.conv_cfg,
- width,
- self.planes * self.expansion,
- kernel_size=1,
- bias=False)
- self.add_module(self.norm3_name, norm3)
- if self.with_plugins:
- self._del_block_plugins(self.after_conv1_plugin_names +
- self.after_conv2_plugin_names +
- self.after_conv3_plugin_names)
- self.after_conv1_plugin_names = self.make_block_plugins(
- width, self.after_conv1_plugins)
- self.after_conv2_plugin_names = self.make_block_plugins(
- width, self.after_conv2_plugins)
- self.after_conv3_plugin_names = self.make_block_plugins(
- self.planes * self.expansion, self.after_conv3_plugins)
- def _del_block_plugins(self, plugin_names):
- """delete plugins for block if exist.
- Args:
- plugin_names (list[str]): List of plugins name to delete.
- """
- assert isinstance(plugin_names, list)
- for plugin_name in plugin_names:
- del self._modules[plugin_name]
- @MODELS.register_module()
- class ResNeXt(ResNet):
- """ResNeXt backbone.
- Args:
- depth (int): Depth of resnet, from {18, 34, 50, 101, 152}.
- in_channels (int): Number of input image channels. Default: 3.
- num_stages (int): Resnet stages. Default: 4.
- groups (int): Group of resnext.
- base_width (int): Base width of resnext.
- strides (Sequence[int]): Strides of the first block of each stage.
- dilations (Sequence[int]): Dilation of each stage.
- out_indices (Sequence[int]): Output from which stages.
- style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two
- layer is the 3x3 conv layer, otherwise the stride-two layer is
- the first 1x1 conv layer.
- frozen_stages (int): Stages to be frozen (all param fixed). -1 means
- not freezing any parameters.
- norm_cfg (dict): dictionary to construct and config norm layer.
- norm_eval (bool): Whether to set norm layers to eval mode, namely,
- freeze running stats (mean and var). Note: Effect on Batch Norm
- and its variants only.
- with_cp (bool): Use checkpoint or not. Using checkpoint will save some
- memory while slowing down the training speed.
- zero_init_residual (bool): whether to use zero init for last norm layer
- in resblocks to let them behave as identity.
- """
- arch_settings = {
- 50: (Bottleneck, (3, 4, 6, 3)),
- 101: (Bottleneck, (3, 4, 23, 3)),
- 152: (Bottleneck, (3, 8, 36, 3))
- }
- def __init__(self, groups=1, base_width=4, **kwargs):
- self.groups = groups
- self.base_width = base_width
- super(ResNeXt, self).__init__(**kwargs)
- def make_res_layer(self, **kwargs):
- """Pack all blocks in a stage into a ``ResLayer``"""
- return ResLayer(
- groups=self.groups,
- base_width=self.base_width,
- base_channels=self.base_channels,
- **kwargs)
|