123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672 |
- # Copyright (c) OpenMMLab. All rights reserved.
- import warnings
- import torch.nn as nn
- import torch.utils.checkpoint as cp
- from mmcv.cnn import build_conv_layer, build_norm_layer, build_plugin_layer
- from mmengine.model import BaseModule
- from torch.nn.modules.batchnorm import _BatchNorm
- from mmdet.registry import MODELS
- from ..layers import ResLayer
- class BasicBlock(BaseModule):
- expansion = 1
- def __init__(self,
- inplanes,
- planes,
- stride=1,
- dilation=1,
- downsample=None,
- style='pytorch',
- with_cp=False,
- conv_cfg=None,
- norm_cfg=dict(type='BN'),
- dcn=None,
- plugins=None,
- init_cfg=None):
- super(BasicBlock, self).__init__(init_cfg)
- assert dcn is None, 'Not implemented yet.'
- assert plugins is None, 'Not implemented yet.'
- self.norm1_name, norm1 = build_norm_layer(norm_cfg, planes, postfix=1)
- self.norm2_name, norm2 = build_norm_layer(norm_cfg, planes, postfix=2)
- self.conv1 = build_conv_layer(
- conv_cfg,
- inplanes,
- planes,
- 3,
- stride=stride,
- padding=dilation,
- dilation=dilation,
- bias=False)
- self.add_module(self.norm1_name, norm1)
- self.conv2 = build_conv_layer(
- conv_cfg, planes, planes, 3, padding=1, bias=False)
- self.add_module(self.norm2_name, norm2)
- self.relu = nn.ReLU(inplace=True)
- self.downsample = downsample
- self.stride = stride
- self.dilation = dilation
- self.with_cp = with_cp
- @property
- def norm1(self):
- """nn.Module: normalization layer after the first convolution layer"""
- return getattr(self, self.norm1_name)
- @property
- def norm2(self):
- """nn.Module: normalization layer after the second convolution layer"""
- return getattr(self, self.norm2_name)
- def forward(self, x):
- """Forward function."""
- def _inner_forward(x):
- identity = x
- out = self.conv1(x)
- out = self.norm1(out)
- out = self.relu(out)
- out = self.conv2(out)
- out = self.norm2(out)
- if self.downsample is not None:
- identity = self.downsample(x)
- out += identity
- return out
- if self.with_cp and x.requires_grad:
- out = cp.checkpoint(_inner_forward, x)
- else:
- out = _inner_forward(x)
- out = self.relu(out)
- return out
- class Bottleneck(BaseModule):
- expansion = 4
- def __init__(self,
- inplanes,
- planes,
- stride=1,
- dilation=1,
- downsample=None,
- style='pytorch',
- with_cp=False,
- conv_cfg=None,
- norm_cfg=dict(type='BN'),
- dcn=None,
- plugins=None,
- init_cfg=None):
- """Bottleneck block for ResNet.
- If style is "pytorch", the stride-two layer is the 3x3 conv layer, if
- it is "caffe", the stride-two layer is the first 1x1 conv layer.
- """
- super(Bottleneck, self).__init__(init_cfg)
- assert style in ['pytorch', 'caffe']
- assert dcn is None or isinstance(dcn, dict)
- assert plugins is None or isinstance(plugins, list)
- if plugins is not None:
- allowed_position = ['after_conv1', 'after_conv2', 'after_conv3']
- assert all(p['position'] in allowed_position for p in plugins)
- self.inplanes = inplanes
- self.planes = planes
- self.stride = stride
- self.dilation = dilation
- self.style = style
- self.with_cp = with_cp
- self.conv_cfg = conv_cfg
- self.norm_cfg = norm_cfg
- self.dcn = dcn
- self.with_dcn = dcn is not None
- self.plugins = plugins
- self.with_plugins = plugins is not None
- if self.with_plugins:
- # collect plugins for conv1/conv2/conv3
- self.after_conv1_plugins = [
- plugin['cfg'] for plugin in plugins
- if plugin['position'] == 'after_conv1'
- ]
- self.after_conv2_plugins = [
- plugin['cfg'] for plugin in plugins
- if plugin['position'] == 'after_conv2'
- ]
- self.after_conv3_plugins = [
- plugin['cfg'] for plugin in plugins
- if plugin['position'] == 'after_conv3'
- ]
- if self.style == 'pytorch':
- self.conv1_stride = 1
- self.conv2_stride = stride
- else:
- self.conv1_stride = stride
- self.conv2_stride = 1
- self.norm1_name, norm1 = build_norm_layer(norm_cfg, planes, postfix=1)
- self.norm2_name, norm2 = build_norm_layer(norm_cfg, planes, postfix=2)
- self.norm3_name, norm3 = build_norm_layer(
- norm_cfg, planes * self.expansion, postfix=3)
- self.conv1 = build_conv_layer(
- conv_cfg,
- inplanes,
- planes,
- kernel_size=1,
- stride=self.conv1_stride,
- bias=False)
- self.add_module(self.norm1_name, norm1)
- fallback_on_stride = False
- if self.with_dcn:
- fallback_on_stride = dcn.pop('fallback_on_stride', False)
- if not self.with_dcn or fallback_on_stride:
- self.conv2 = build_conv_layer(
- conv_cfg,
- planes,
- planes,
- kernel_size=3,
- stride=self.conv2_stride,
- padding=dilation,
- dilation=dilation,
- bias=False)
- else:
- assert self.conv_cfg is None, 'conv_cfg must be None for DCN'
- self.conv2 = build_conv_layer(
- dcn,
- planes,
- planes,
- kernel_size=3,
- stride=self.conv2_stride,
- padding=dilation,
- dilation=dilation,
- bias=False)
- self.add_module(self.norm2_name, norm2)
- self.conv3 = build_conv_layer(
- conv_cfg,
- planes,
- planes * self.expansion,
- kernel_size=1,
- bias=False)
- self.add_module(self.norm3_name, norm3)
- self.relu = nn.ReLU(inplace=True)
- self.downsample = downsample
- if self.with_plugins:
- self.after_conv1_plugin_names = self.make_block_plugins(
- planes, self.after_conv1_plugins)
- self.after_conv2_plugin_names = self.make_block_plugins(
- planes, self.after_conv2_plugins)
- self.after_conv3_plugin_names = self.make_block_plugins(
- planes * self.expansion, self.after_conv3_plugins)
- def make_block_plugins(self, in_channels, plugins):
- """make plugins for block.
- Args:
- in_channels (int): Input channels of plugin.
- plugins (list[dict]): List of plugins cfg to build.
- Returns:
- list[str]: List of the names of plugin.
- """
- assert isinstance(plugins, list)
- plugin_names = []
- for plugin in plugins:
- plugin = plugin.copy()
- name, layer = build_plugin_layer(
- plugin,
- in_channels=in_channels,
- postfix=plugin.pop('postfix', ''))
- assert not hasattr(self, name), f'duplicate plugin {name}'
- self.add_module(name, layer)
- plugin_names.append(name)
- return plugin_names
- def forward_plugin(self, x, plugin_names):
- out = x
- for name in plugin_names:
- out = getattr(self, name)(out)
- return out
- @property
- def norm1(self):
- """nn.Module: normalization layer after the first convolution layer"""
- return getattr(self, self.norm1_name)
- @property
- def norm2(self):
- """nn.Module: normalization layer after the second convolution layer"""
- return getattr(self, self.norm2_name)
- @property
- def norm3(self):
- """nn.Module: normalization layer after the third convolution layer"""
- return getattr(self, self.norm3_name)
- def forward(self, x):
- """Forward function."""
- def _inner_forward(x):
- identity = x
- out = self.conv1(x)
- out = self.norm1(out)
- out = self.relu(out)
- if self.with_plugins:
- out = self.forward_plugin(out, self.after_conv1_plugin_names)
- out = self.conv2(out)
- out = self.norm2(out)
- out = self.relu(out)
- if self.with_plugins:
- out = self.forward_plugin(out, self.after_conv2_plugin_names)
- out = self.conv3(out)
- out = self.norm3(out)
- if self.with_plugins:
- out = self.forward_plugin(out, self.after_conv3_plugin_names)
- if self.downsample is not None:
- identity = self.downsample(x)
- out += identity
- return out
- if self.with_cp and x.requires_grad:
- out = cp.checkpoint(_inner_forward, x)
- else:
- out = _inner_forward(x)
- out = self.relu(out)
- return out
- @MODELS.register_module()
- class ResNet(BaseModule):
- """ResNet backbone.
- Args:
- depth (int): Depth of resnet, from {18, 34, 50, 101, 152}.
- stem_channels (int | None): Number of stem channels. If not specified,
- it will be the same as `base_channels`. Default: None.
- base_channels (int): Number of base channels of res layer. Default: 64.
- in_channels (int): Number of input image channels. Default: 3.
- num_stages (int): Resnet stages. Default: 4.
- strides (Sequence[int]): Strides of the first block of each stage.
- dilations (Sequence[int]): Dilation of each stage.
- out_indices (Sequence[int]): Output from which stages.
- style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two
- layer is the 3x3 conv layer, otherwise the stride-two layer is
- the first 1x1 conv layer.
- deep_stem (bool): Replace 7x7 conv in input stem with 3 3x3 conv
- avg_down (bool): Use AvgPool instead of stride conv when
- downsampling in the bottleneck.
- frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
- -1 means not freezing any parameters.
- norm_cfg (dict): Dictionary to construct and config norm layer.
- norm_eval (bool): Whether to set norm layers to eval mode, namely,
- freeze running stats (mean and var). Note: Effect on Batch Norm
- and its variants only.
- plugins (list[dict]): List of plugins for stages, each dict contains:
- - cfg (dict, required): Cfg dict to build plugin.
- - position (str, required): Position inside block to insert
- plugin, options are 'after_conv1', 'after_conv2', 'after_conv3'.
- - stages (tuple[bool], optional): Stages to apply plugin, length
- should be same as 'num_stages'.
- with_cp (bool): Use checkpoint or not. Using checkpoint will save some
- memory while slowing down the training speed.
- zero_init_residual (bool): Whether to use zero init for last norm layer
- in resblocks to let them behave as identity.
- pretrained (str, optional): model pretrained path. Default: None
- init_cfg (dict or list[dict], optional): Initialization config dict.
- Default: None
- Example:
- >>> from mmdet.models import ResNet
- >>> import torch
- >>> self = ResNet(depth=18)
- >>> self.eval()
- >>> inputs = torch.rand(1, 3, 32, 32)
- >>> level_outputs = self.forward(inputs)
- >>> for level_out in level_outputs:
- ... print(tuple(level_out.shape))
- (1, 64, 8, 8)
- (1, 128, 4, 4)
- (1, 256, 2, 2)
- (1, 512, 1, 1)
- """
- arch_settings = {
- 18: (BasicBlock, (2, 2, 2, 2)),
- 34: (BasicBlock, (3, 4, 6, 3)),
- 50: (Bottleneck, (3, 4, 6, 3)),
- 101: (Bottleneck, (3, 4, 23, 3)),
- 152: (Bottleneck, (3, 8, 36, 3))
- }
- def __init__(self,
- depth,
- in_channels=3,
- stem_channels=None,
- base_channels=64,
- num_stages=4,
- strides=(1, 2, 2, 2),
- dilations=(1, 1, 1, 1),
- out_indices=(0, 1, 2, 3),
- style='pytorch',
- deep_stem=False,
- avg_down=False,
- frozen_stages=-1,
- conv_cfg=None,
- norm_cfg=dict(type='BN', requires_grad=True),
- norm_eval=True,
- dcn=None,
- stage_with_dcn=(False, False, False, False),
- plugins=None,
- with_cp=False,
- zero_init_residual=True,
- pretrained=None,
- init_cfg=None):
- super(ResNet, self).__init__(init_cfg)
- self.zero_init_residual = zero_init_residual
- if depth not in self.arch_settings:
- raise KeyError(f'invalid depth {depth} for resnet')
- block_init_cfg = None
- assert not (init_cfg and pretrained), \
- 'init_cfg and pretrained cannot be specified at the same time'
- if isinstance(pretrained, str):
- warnings.warn('DeprecationWarning: pretrained is deprecated, '
- 'please use "init_cfg" instead')
- self.init_cfg = dict(type='Pretrained', checkpoint=pretrained)
- elif pretrained is None:
- if init_cfg is None:
- self.init_cfg = [
- dict(type='Kaiming', layer='Conv2d'),
- dict(
- type='Constant',
- val=1,
- layer=['_BatchNorm', 'GroupNorm'])
- ]
- block = self.arch_settings[depth][0]
- if self.zero_init_residual:
- if block is BasicBlock:
- block_init_cfg = dict(
- type='Constant',
- val=0,
- override=dict(name='norm2'))
- elif block is Bottleneck:
- block_init_cfg = dict(
- type='Constant',
- val=0,
- override=dict(name='norm3'))
- else:
- raise TypeError('pretrained must be a str or None')
- self.depth = depth
- if stem_channels is None:
- stem_channels = base_channels
- self.stem_channels = stem_channels
- self.base_channels = base_channels
- self.num_stages = num_stages
- assert num_stages >= 1 and num_stages <= 4
- self.strides = strides
- self.dilations = dilations
- assert len(strides) == len(dilations) == num_stages
- self.out_indices = out_indices
- assert max(out_indices) < num_stages
- self.style = style
- self.deep_stem = deep_stem
- self.avg_down = avg_down
- self.frozen_stages = frozen_stages
- self.conv_cfg = conv_cfg
- self.norm_cfg = norm_cfg
- self.with_cp = with_cp
- self.norm_eval = norm_eval
- self.dcn = dcn
- self.stage_with_dcn = stage_with_dcn
- if dcn is not None:
- assert len(stage_with_dcn) == num_stages
- self.plugins = plugins
- self.block, stage_blocks = self.arch_settings[depth]
- self.stage_blocks = stage_blocks[:num_stages]
- self.inplanes = stem_channels
- self._make_stem_layer(in_channels, stem_channels)
- self.res_layers = []
- for i, num_blocks in enumerate(self.stage_blocks):
- stride = strides[i]
- dilation = dilations[i]
- dcn = self.dcn if self.stage_with_dcn[i] else None
- if plugins is not None:
- stage_plugins = self.make_stage_plugins(plugins, i)
- else:
- stage_plugins = None
- planes = base_channels * 2**i
- res_layer = self.make_res_layer(
- block=self.block,
- inplanes=self.inplanes,
- planes=planes,
- num_blocks=num_blocks,
- stride=stride,
- dilation=dilation,
- style=self.style,
- avg_down=self.avg_down,
- with_cp=with_cp,
- conv_cfg=conv_cfg,
- norm_cfg=norm_cfg,
- dcn=dcn,
- plugins=stage_plugins,
- init_cfg=block_init_cfg)
- self.inplanes = planes * self.block.expansion
- layer_name = f'layer{i + 1}'
- self.add_module(layer_name, res_layer)
- self.res_layers.append(layer_name)
- self._freeze_stages()
- self.feat_dim = self.block.expansion * base_channels * 2**(
- len(self.stage_blocks) - 1)
- def make_stage_plugins(self, plugins, stage_idx):
- """Make plugins for ResNet ``stage_idx`` th stage.
- Currently we support to insert ``context_block``,
- ``empirical_attention_block``, ``nonlocal_block`` into the backbone
- like ResNet/ResNeXt. They could be inserted after conv1/conv2/conv3 of
- Bottleneck.
- An example of plugins format could be:
- Examples:
- >>> plugins=[
- ... dict(cfg=dict(type='xxx', arg1='xxx'),
- ... stages=(False, True, True, True),
- ... position='after_conv2'),
- ... dict(cfg=dict(type='yyy'),
- ... stages=(True, True, True, True),
- ... position='after_conv3'),
- ... dict(cfg=dict(type='zzz', postfix='1'),
- ... stages=(True, True, True, True),
- ... position='after_conv3'),
- ... dict(cfg=dict(type='zzz', postfix='2'),
- ... stages=(True, True, True, True),
- ... position='after_conv3')
- ... ]
- >>> self = ResNet(depth=18)
- >>> stage_plugins = self.make_stage_plugins(plugins, 0)
- >>> assert len(stage_plugins) == 3
- Suppose ``stage_idx=0``, the structure of blocks in the stage would be:
- .. code-block:: none
- conv1-> conv2->conv3->yyy->zzz1->zzz2
- Suppose 'stage_idx=1', the structure of blocks in the stage would be:
- .. code-block:: none
- conv1-> conv2->xxx->conv3->yyy->zzz1->zzz2
- If stages is missing, the plugin would be applied to all stages.
- Args:
- plugins (list[dict]): List of plugins cfg to build. The postfix is
- required if multiple same type plugins are inserted.
- stage_idx (int): Index of stage to build
- Returns:
- list[dict]: Plugins for current stage
- """
- stage_plugins = []
- for plugin in plugins:
- plugin = plugin.copy()
- stages = plugin.pop('stages', None)
- assert stages is None or len(stages) == self.num_stages
- # whether to insert plugin into current stage
- if stages is None or stages[stage_idx]:
- stage_plugins.append(plugin)
- return stage_plugins
- def make_res_layer(self, **kwargs):
- """Pack all blocks in a stage into a ``ResLayer``."""
- return ResLayer(**kwargs)
- @property
- def norm1(self):
- """nn.Module: the normalization layer named "norm1" """
- return getattr(self, self.norm1_name)
- def _make_stem_layer(self, in_channels, stem_channels):
- if self.deep_stem:
- self.stem = nn.Sequential(
- build_conv_layer(
- self.conv_cfg,
- in_channels,
- stem_channels // 2,
- kernel_size=3,
- stride=2,
- padding=1,
- bias=False),
- build_norm_layer(self.norm_cfg, stem_channels // 2)[1],
- nn.ReLU(inplace=True),
- build_conv_layer(
- self.conv_cfg,
- stem_channels // 2,
- stem_channels // 2,
- kernel_size=3,
- stride=1,
- padding=1,
- bias=False),
- build_norm_layer(self.norm_cfg, stem_channels // 2)[1],
- nn.ReLU(inplace=True),
- build_conv_layer(
- self.conv_cfg,
- stem_channels // 2,
- stem_channels,
- kernel_size=3,
- stride=1,
- padding=1,
- bias=False),
- build_norm_layer(self.norm_cfg, stem_channels)[1],
- nn.ReLU(inplace=True))
- else:
- self.conv1 = build_conv_layer(
- self.conv_cfg,
- in_channels,
- stem_channels,
- kernel_size=7,
- stride=2,
- padding=3,
- bias=False)
- self.norm1_name, norm1 = build_norm_layer(
- self.norm_cfg, stem_channels, postfix=1)
- self.add_module(self.norm1_name, norm1)
- self.relu = nn.ReLU(inplace=True)
- self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
- def _freeze_stages(self):
- if self.frozen_stages >= 0:
- if self.deep_stem:
- self.stem.eval()
- for param in self.stem.parameters():
- param.requires_grad = False
- else:
- self.norm1.eval()
- for m in [self.conv1, self.norm1]:
- for param in m.parameters():
- param.requires_grad = False
- for i in range(1, self.frozen_stages + 1):
- m = getattr(self, f'layer{i}')
- m.eval()
- for param in m.parameters():
- param.requires_grad = False
- def forward(self, x):
- """Forward function."""
- if self.deep_stem:
- x = self.stem(x)
- else:
- x = self.conv1(x)
- x = self.norm1(x)
- x = self.relu(x)
- x = self.maxpool(x)
- outs = []
- for i, layer_name in enumerate(self.res_layers):
- res_layer = getattr(self, layer_name)
- x = res_layer(x)
- if i in self.out_indices:
- outs.append(x)
- return tuple(outs)
- def train(self, mode=True):
- """Convert the model into training mode while keep normalization layer
- freezed."""
- super(ResNet, self).train(mode)
- self._freeze_stages()
- if mode and self.norm_eval:
- for m in self.modules():
- # trick: eval have effect on BatchNorm only
- if isinstance(m, _BatchNorm):
- m.eval()
- @MODELS.register_module()
- class ResNetV1d(ResNet):
- r"""ResNetV1d variant described in `Bag of Tricks
- <https://arxiv.org/pdf/1812.01187.pdf>`_.
- Compared with default ResNet(ResNetV1b), ResNetV1d replaces the 7x7 conv in
- the input stem with three 3x3 convs. And in the downsampling block, a 2x2
- avg_pool with stride 2 is added before conv, whose stride is changed to 1.
- """
- def __init__(self, **kwargs):
- super(ResNetV1d, self).__init__(
- deep_stem=True, avg_down=True, **kwargs)
|