123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195 |
- # Copyright (c) OpenMMLab. All rights reserved.
- import math
- from typing import Sequence, Tuple
- import torch.nn as nn
- from mmcv.cnn import ConvModule, DepthwiseSeparableConvModule
- from mmengine.model import BaseModule
- from torch import Tensor
- from torch.nn.modules.batchnorm import _BatchNorm
- from mmdet.registry import MODELS
- from mmdet.utils import ConfigType, OptConfigType, OptMultiConfig
- from ..layers import CSPLayer
- from .csp_darknet import SPPBottleneck
- @MODELS.register_module()
- class CSPNeXt(BaseModule):
- """CSPNeXt backbone used in RTMDet.
- Args:
- arch (str): Architecture of CSPNeXt, from {P5, P6}.
- Defaults to P5.
- expand_ratio (float): Ratio to adjust the number of channels of the
- hidden layer. Defaults to 0.5.
- deepen_factor (float): Depth multiplier, multiply number of
- blocks in CSP layer by this amount. Defaults to 1.0.
- widen_factor (float): Width multiplier, multiply number of
- channels in each layer by this amount. Defaults to 1.0.
- out_indices (Sequence[int]): Output from which stages.
- Defaults to (2, 3, 4).
- frozen_stages (int): Stages to be frozen (stop grad and set eval
- mode). -1 means not freezing any parameters. Defaults to -1.
- use_depthwise (bool): Whether to use depthwise separable convolution.
- Defaults to False.
- arch_ovewrite (list): Overwrite default arch settings.
- Defaults to None.
- spp_kernel_sizes: (tuple[int]): Sequential of kernel sizes of SPP
- layers. Defaults to (5, 9, 13).
- channel_attention (bool): Whether to add channel attention in each
- stage. Defaults to True.
- conv_cfg (:obj:`ConfigDict` or dict, optional): Config dict for
- convolution layer. Defaults to None.
- norm_cfg (:obj:`ConfigDict` or dict): Dictionary to construct and
- config norm layer. Defaults to dict(type='BN', requires_grad=True).
- act_cfg (:obj:`ConfigDict` or dict): Config dict for activation layer.
- Defaults to dict(type='SiLU').
- norm_eval (bool): Whether to set norm layers to eval mode, namely,
- freeze running stats (mean and var). Note: Effect on Batch Norm
- and its variants only.
- init_cfg (:obj:`ConfigDict` or dict or list[dict] or
- list[:obj:`ConfigDict`]): Initialization config dict.
- """
- # From left to right:
- # in_channels, out_channels, num_blocks, add_identity, use_spp
- arch_settings = {
- 'P5': [[64, 128, 3, True, False], [128, 256, 6, True, False],
- [256, 512, 6, True, False], [512, 1024, 3, False, True]],
- 'P6': [[64, 128, 3, True, False], [128, 256, 6, True, False],
- [256, 512, 6, True, False], [512, 768, 3, True, False],
- [768, 1024, 3, False, True]]
- }
- def __init__(
- self,
- arch: str = 'P5',
- deepen_factor: float = 1.0,
- widen_factor: float = 1.0,
- out_indices: Sequence[int] = (2, 3, 4),
- frozen_stages: int = -1,
- use_depthwise: bool = False,
- expand_ratio: float = 0.5,
- arch_ovewrite: dict = None,
- spp_kernel_sizes: Sequence[int] = (5, 9, 13),
- channel_attention: bool = True,
- conv_cfg: OptConfigType = None,
- norm_cfg: ConfigType = dict(type='BN', momentum=0.03, eps=0.001),
- act_cfg: ConfigType = dict(type='SiLU'),
- norm_eval: bool = False,
- init_cfg: OptMultiConfig = dict(
- type='Kaiming',
- layer='Conv2d',
- a=math.sqrt(5),
- distribution='uniform',
- mode='fan_in',
- nonlinearity='leaky_relu')
- ) -> None:
- super().__init__(init_cfg=init_cfg)
- arch_setting = self.arch_settings[arch]
- if arch_ovewrite:
- arch_setting = arch_ovewrite
- assert set(out_indices).issubset(
- i for i in range(len(arch_setting) + 1))
- if frozen_stages not in range(-1, len(arch_setting) + 1):
- raise ValueError('frozen_stages must be in range(-1, '
- 'len(arch_setting) + 1). But received '
- f'{frozen_stages}')
- self.out_indices = out_indices
- self.frozen_stages = frozen_stages
- self.use_depthwise = use_depthwise
- self.norm_eval = norm_eval
- conv = DepthwiseSeparableConvModule if use_depthwise else ConvModule
- self.stem = nn.Sequential(
- ConvModule(
- 3,
- int(arch_setting[0][0] * widen_factor // 2),
- 3,
- padding=1,
- stride=2,
- norm_cfg=norm_cfg,
- act_cfg=act_cfg),
- ConvModule(
- int(arch_setting[0][0] * widen_factor // 2),
- int(arch_setting[0][0] * widen_factor // 2),
- 3,
- padding=1,
- stride=1,
- norm_cfg=norm_cfg,
- act_cfg=act_cfg),
- ConvModule(
- int(arch_setting[0][0] * widen_factor // 2),
- int(arch_setting[0][0] * widen_factor),
- 3,
- padding=1,
- stride=1,
- norm_cfg=norm_cfg,
- act_cfg=act_cfg))
- self.layers = ['stem']
- for i, (in_channels, out_channels, num_blocks, add_identity,
- use_spp) in enumerate(arch_setting):
- in_channels = int(in_channels * widen_factor)
- out_channels = int(out_channels * widen_factor)
- num_blocks = max(round(num_blocks * deepen_factor), 1)
- stage = []
- conv_layer = conv(
- in_channels,
- out_channels,
- 3,
- stride=2,
- padding=1,
- conv_cfg=conv_cfg,
- norm_cfg=norm_cfg,
- act_cfg=act_cfg)
- stage.append(conv_layer)
- if use_spp:
- spp = SPPBottleneck(
- out_channels,
- out_channels,
- kernel_sizes=spp_kernel_sizes,
- conv_cfg=conv_cfg,
- norm_cfg=norm_cfg,
- act_cfg=act_cfg)
- stage.append(spp)
- csp_layer = CSPLayer(
- out_channels,
- out_channels,
- num_blocks=num_blocks,
- add_identity=add_identity,
- use_depthwise=use_depthwise,
- use_cspnext_block=True,
- expand_ratio=expand_ratio,
- channel_attention=channel_attention,
- conv_cfg=conv_cfg,
- norm_cfg=norm_cfg,
- act_cfg=act_cfg)
- stage.append(csp_layer)
- self.add_module(f'stage{i + 1}', nn.Sequential(*stage))
- self.layers.append(f'stage{i + 1}')
- def _freeze_stages(self) -> None:
- if self.frozen_stages >= 0:
- for i in range(self.frozen_stages + 1):
- m = getattr(self, self.layers[i])
- m.eval()
- for param in m.parameters():
- param.requires_grad = False
- def train(self, mode=True) -> None:
- super().train(mode)
- self._freeze_stages()
- if mode and self.norm_eval:
- for m in self.modules():
- if isinstance(m, _BatchNorm):
- m.eval()
- def forward(self, x: Tuple[Tensor, ...]) -> Tuple[Tensor, ...]:
- outs = []
- for i, layer_name in enumerate(self.layers):
- layer = getattr(self, layer_name)
- x = layer(x)
- if i in self.out_indices:
- outs.append(x)
- return tuple(outs)
|