123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286 |
- # Copyright (c) OpenMMLab. All rights reserved.
- import math
- import torch
- import torch.nn as nn
- from mmcv.cnn import ConvModule, DepthwiseSeparableConvModule
- from mmengine.model import BaseModule
- from torch.nn.modules.batchnorm import _BatchNorm
- from mmdet.registry import MODELS
- from ..layers import CSPLayer
- class Focus(nn.Module):
- """Focus width and height information into channel space.
- Args:
- in_channels (int): The input channels of this Module.
- out_channels (int): The output channels of this Module.
- kernel_size (int): The kernel size of the convolution. Default: 1
- stride (int): The stride of the convolution. Default: 1
- conv_cfg (dict): Config dict for convolution layer. Default: None,
- which means using conv2d.
- norm_cfg (dict): Config dict for normalization layer.
- Default: dict(type='BN', momentum=0.03, eps=0.001).
- act_cfg (dict): Config dict for activation layer.
- Default: dict(type='Swish').
- """
- def __init__(self,
- in_channels,
- out_channels,
- kernel_size=1,
- stride=1,
- conv_cfg=None,
- norm_cfg=dict(type='BN', momentum=0.03, eps=0.001),
- act_cfg=dict(type='Swish')):
- super().__init__()
- self.conv = ConvModule(
- in_channels * 4,
- out_channels,
- kernel_size,
- stride,
- padding=(kernel_size - 1) // 2,
- conv_cfg=conv_cfg,
- norm_cfg=norm_cfg,
- act_cfg=act_cfg)
- def forward(self, x):
- # shape of x (b,c,w,h) -> y(b,4c,w/2,h/2)
- patch_top_left = x[..., ::2, ::2]
- patch_top_right = x[..., ::2, 1::2]
- patch_bot_left = x[..., 1::2, ::2]
- patch_bot_right = x[..., 1::2, 1::2]
- x = torch.cat(
- (
- patch_top_left,
- patch_bot_left,
- patch_top_right,
- patch_bot_right,
- ),
- dim=1,
- )
- return self.conv(x)
- class SPPBottleneck(BaseModule):
- """Spatial pyramid pooling layer used in YOLOv3-SPP.
- Args:
- in_channels (int): The input channels of this Module.
- out_channels (int): The output channels of this Module.
- kernel_sizes (tuple[int]): Sequential of kernel sizes of pooling
- layers. Default: (5, 9, 13).
- conv_cfg (dict): Config dict for convolution layer. Default: None,
- which means using conv2d.
- norm_cfg (dict): Config dict for normalization layer.
- Default: dict(type='BN').
- act_cfg (dict): Config dict for activation layer.
- Default: dict(type='Swish').
- init_cfg (dict or list[dict], optional): Initialization config dict.
- Default: None.
- """
- def __init__(self,
- in_channels,
- out_channels,
- kernel_sizes=(5, 9, 13),
- conv_cfg=None,
- norm_cfg=dict(type='BN', momentum=0.03, eps=0.001),
- act_cfg=dict(type='Swish'),
- init_cfg=None):
- super().__init__(init_cfg)
- mid_channels = in_channels // 2
- self.conv1 = ConvModule(
- in_channels,
- mid_channels,
- 1,
- stride=1,
- conv_cfg=conv_cfg,
- norm_cfg=norm_cfg,
- act_cfg=act_cfg)
- self.poolings = nn.ModuleList([
- nn.MaxPool2d(kernel_size=ks, stride=1, padding=ks // 2)
- for ks in kernel_sizes
- ])
- conv2_channels = mid_channels * (len(kernel_sizes) + 1)
- self.conv2 = ConvModule(
- conv2_channels,
- out_channels,
- 1,
- conv_cfg=conv_cfg,
- norm_cfg=norm_cfg,
- act_cfg=act_cfg)
- def forward(self, x):
- x = self.conv1(x)
- with torch.cuda.amp.autocast(enabled=False):
- x = torch.cat(
- [x] + [pooling(x) for pooling in self.poolings], dim=1)
- x = self.conv2(x)
- return x
- @MODELS.register_module()
- class CSPDarknet(BaseModule):
- """CSP-Darknet backbone used in YOLOv5 and YOLOX.
- Args:
- arch (str): Architecture of CSP-Darknet, from {P5, P6}.
- Default: P5.
- deepen_factor (float): Depth multiplier, multiply number of
- blocks in CSP layer by this amount. Default: 1.0.
- widen_factor (float): Width multiplier, multiply number of
- channels in each layer by this amount. Default: 1.0.
- out_indices (Sequence[int]): Output from which stages.
- Default: (2, 3, 4).
- frozen_stages (int): Stages to be frozen (stop grad and set eval
- mode). -1 means not freezing any parameters. Default: -1.
- use_depthwise (bool): Whether to use depthwise separable convolution.
- Default: False.
- arch_ovewrite(list): Overwrite default arch settings. Default: None.
- spp_kernal_sizes: (tuple[int]): Sequential of kernel sizes of SPP
- layers. Default: (5, 9, 13).
- conv_cfg (dict): Config dict for convolution layer. Default: None.
- norm_cfg (dict): Dictionary to construct and config norm layer.
- Default: dict(type='BN', requires_grad=True).
- act_cfg (dict): Config dict for activation layer.
- Default: dict(type='LeakyReLU', negative_slope=0.1).
- norm_eval (bool): Whether to set norm layers to eval mode, namely,
- freeze running stats (mean and var). Note: Effect on Batch Norm
- and its variants only.
- init_cfg (dict or list[dict], optional): Initialization config dict.
- Default: None.
- Example:
- >>> from mmdet.models import CSPDarknet
- >>> import torch
- >>> self = CSPDarknet(depth=53)
- >>> self.eval()
- >>> inputs = torch.rand(1, 3, 416, 416)
- >>> level_outputs = self.forward(inputs)
- >>> for level_out in level_outputs:
- ... print(tuple(level_out.shape))
- ...
- (1, 256, 52, 52)
- (1, 512, 26, 26)
- (1, 1024, 13, 13)
- """
- # From left to right:
- # in_channels, out_channels, num_blocks, add_identity, use_spp
- arch_settings = {
- 'P5': [[64, 128, 3, True, False], [128, 256, 9, True, False],
- [256, 512, 9, True, False], [512, 1024, 3, False, True]],
- 'P6': [[64, 128, 3, True, False], [128, 256, 9, True, False],
- [256, 512, 9, True, False], [512, 768, 3, True, False],
- [768, 1024, 3, False, True]]
- }
- def __init__(self,
- arch='P5',
- deepen_factor=1.0,
- widen_factor=1.0,
- out_indices=(2, 3, 4),
- frozen_stages=-1,
- use_depthwise=False,
- arch_ovewrite=None,
- spp_kernal_sizes=(5, 9, 13),
- conv_cfg=None,
- norm_cfg=dict(type='BN', momentum=0.03, eps=0.001),
- act_cfg=dict(type='Swish'),
- norm_eval=False,
- init_cfg=dict(
- type='Kaiming',
- layer='Conv2d',
- a=math.sqrt(5),
- distribution='uniform',
- mode='fan_in',
- nonlinearity='leaky_relu')):
- super().__init__(init_cfg)
- arch_setting = self.arch_settings[arch]
- if arch_ovewrite:
- arch_setting = arch_ovewrite
- assert set(out_indices).issubset(
- i for i in range(len(arch_setting) + 1))
- if frozen_stages not in range(-1, len(arch_setting) + 1):
- raise ValueError('frozen_stages must be in range(-1, '
- 'len(arch_setting) + 1). But received '
- f'{frozen_stages}')
- self.out_indices = out_indices
- self.frozen_stages = frozen_stages
- self.use_depthwise = use_depthwise
- self.norm_eval = norm_eval
- conv = DepthwiseSeparableConvModule if use_depthwise else ConvModule
- self.stem = Focus(
- 3,
- int(arch_setting[0][0] * widen_factor),
- kernel_size=3,
- conv_cfg=conv_cfg,
- norm_cfg=norm_cfg,
- act_cfg=act_cfg)
- self.layers = ['stem']
- for i, (in_channels, out_channels, num_blocks, add_identity,
- use_spp) in enumerate(arch_setting):
- in_channels = int(in_channels * widen_factor)
- out_channels = int(out_channels * widen_factor)
- num_blocks = max(round(num_blocks * deepen_factor), 1)
- stage = []
- conv_layer = conv(
- in_channels,
- out_channels,
- 3,
- stride=2,
- padding=1,
- conv_cfg=conv_cfg,
- norm_cfg=norm_cfg,
- act_cfg=act_cfg)
- stage.append(conv_layer)
- if use_spp:
- spp = SPPBottleneck(
- out_channels,
- out_channels,
- kernel_sizes=spp_kernal_sizes,
- conv_cfg=conv_cfg,
- norm_cfg=norm_cfg,
- act_cfg=act_cfg)
- stage.append(spp)
- csp_layer = CSPLayer(
- out_channels,
- out_channels,
- num_blocks=num_blocks,
- add_identity=add_identity,
- use_depthwise=use_depthwise,
- conv_cfg=conv_cfg,
- norm_cfg=norm_cfg,
- act_cfg=act_cfg)
- stage.append(csp_layer)
- self.add_module(f'stage{i + 1}', nn.Sequential(*stage))
- self.layers.append(f'stage{i + 1}')
- def _freeze_stages(self):
- if self.frozen_stages >= 0:
- for i in range(self.frozen_stages + 1):
- m = getattr(self, self.layers[i])
- m.eval()
- for param in m.parameters():
- param.requires_grad = False
- def train(self, mode=True):
- super(CSPDarknet, self).train(mode)
- self._freeze_stages()
- if mode and self.norm_eval:
- for m in self.modules():
- if isinstance(m, _BatchNorm):
- m.eval()
- def forward(self, x):
- outs = []
- for i, layer_name in enumerate(self.layers):
- layer = getattr(self, layer_name)
- x = layer(x)
- if i in self.out_indices:
- outs.append(x)
- return tuple(outs)
|