123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282 |
- # Copyright (c) OpenMMLab. All rights reserved.
- import numpy as np
- from mmcv.transforms import to_tensor
- from mmcv.transforms.base import BaseTransform
- from mmengine.structures import InstanceData, PixelData
- from mmdet.registry import TRANSFORMS
- from mmdet.structures import DetDataSample
- from mmdet.structures.bbox import BaseBoxes
- @TRANSFORMS.register_module()
- class PackDetInputs(BaseTransform):
- """Pack the inputs data for the detection / semantic segmentation /
- panoptic segmentation.
- The ``img_meta`` item is always populated. The contents of the
- ``img_meta`` dictionary depends on ``meta_keys``. By default this includes:
- - ``img_id``: id of the image
- - ``img_path``: path to the image file
- - ``ori_shape``: original shape of the image as a tuple (h, w)
- - ``img_shape``: shape of the image input to the network as a tuple \
- (h, w). Note that images may be zero padded on the \
- bottom/right if the batch tensor is larger than this shape.
- - ``scale_factor``: a float indicating the preprocessing scale
- - ``flip``: a boolean indicating if image flip transform was used
- - ``flip_direction``: the flipping direction
- Args:
- meta_keys (Sequence[str], optional): Meta keys to be converted to
- ``mmcv.DataContainer`` and collected in ``data[img_metas]``.
- Default: ``('img_id', 'img_path', 'ori_shape', 'img_shape',
- 'scale_factor', 'flip', 'flip_direction')``
- """
- mapping_table = {
- 'gt_bboxes': 'bboxes',
- 'gt_bboxes_labels': 'labels',
- 'gt_masks': 'masks'
- }
- def __init__(self,
- meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
- 'scale_factor', 'flip', 'flip_direction')):
- self.meta_keys = meta_keys
- def transform(self, results: dict) -> dict:
- """Method to pack the input data.
- Args:
- results (dict): Result dict from the data pipeline.
- Returns:
- dict:
- - 'inputs' (obj:`torch.Tensor`): The forward data of models.
- - 'data_sample' (obj:`DetDataSample`): The annotation info of the
- sample.
- """
- packed_results = dict()
- if 'img' in results:
- img = results['img']
- if len(img.shape) < 3:
- img = np.expand_dims(img, -1)
- # To improve the computational speed by by 3-5 times, apply:
- # If image is not contiguous, use
- # `numpy.transpose()` followed by `numpy.ascontiguousarray()`
- # If image is already contiguous, use
- # `torch.permute()` followed by `torch.contiguous()`
- # Refer to https://github.com/open-mmlab/mmdetection/pull/9533
- # for more details
- if not img.flags.c_contiguous:
- img = np.ascontiguousarray(img.transpose(2, 0, 1))
- img = to_tensor(img)
- else:
- img = to_tensor(img).permute(2, 0, 1).contiguous()
- packed_results['inputs'] = img
- if 'gt_ignore_flags' in results:
- valid_idx = np.where(results['gt_ignore_flags'] == 0)[0]
- ignore_idx = np.where(results['gt_ignore_flags'] == 1)[0]
- data_sample = DetDataSample()
- instance_data = InstanceData()
- ignore_instance_data = InstanceData()
- for key in self.mapping_table.keys():
- if key not in results:
- continue
- if key == 'gt_masks' or isinstance(results[key], BaseBoxes):
- if 'gt_ignore_flags' in results:
- instance_data[
- self.mapping_table[key]] = results[key][valid_idx]
- ignore_instance_data[
- self.mapping_table[key]] = results[key][ignore_idx]
- else:
- instance_data[self.mapping_table[key]] = results[key]
- else:
- if 'gt_ignore_flags' in results:
- instance_data[self.mapping_table[key]] = to_tensor(
- results[key][valid_idx])
- ignore_instance_data[self.mapping_table[key]] = to_tensor(
- results[key][ignore_idx])
- else:
- instance_data[self.mapping_table[key]] = to_tensor(
- results[key])
- data_sample.gt_instances = instance_data
- data_sample.ignored_instances = ignore_instance_data
- if 'proposals' in results:
- proposals = InstanceData(
- bboxes=to_tensor(results['proposals']),
- scores=to_tensor(results['proposals_scores']))
- data_sample.proposals = proposals
- if 'gt_seg_map' in results:
- gt_sem_seg_data = dict(
- sem_seg=to_tensor(results['gt_seg_map'][None, ...].copy()))
- data_sample.gt_sem_seg = PixelData(**gt_sem_seg_data)
- img_meta = {}
- for key in self.meta_keys:
- assert key in results, f'`{key}` is not found in `results`, ' \
- f'the valid keys are {list(results)}.'
- img_meta[key] = results[key]
- data_sample.set_metainfo(img_meta)
- packed_results['data_samples'] = data_sample
- return packed_results
- def __repr__(self) -> str:
- repr_str = self.__class__.__name__
- repr_str += f'(meta_keys={self.meta_keys})'
- return repr_str
- @TRANSFORMS.register_module()
- class ToTensor:
- """Convert some results to :obj:`torch.Tensor` by given keys.
- Args:
- keys (Sequence[str]): Keys that need to be converted to Tensor.
- """
- def __init__(self, keys):
- self.keys = keys
- def __call__(self, results):
- """Call function to convert data in results to :obj:`torch.Tensor`.
- Args:
- results (dict): Result dict contains the data to convert.
- Returns:
- dict: The result dict contains the data converted
- to :obj:`torch.Tensor`.
- """
- for key in self.keys:
- results[key] = to_tensor(results[key])
- return results
- def __repr__(self):
- return self.__class__.__name__ + f'(keys={self.keys})'
- @TRANSFORMS.register_module()
- class ImageToTensor:
- """Convert image to :obj:`torch.Tensor` by given keys.
- The dimension order of input image is (H, W, C). The pipeline will convert
- it to (C, H, W). If only 2 dimension (H, W) is given, the output would be
- (1, H, W).
- Args:
- keys (Sequence[str]): Key of images to be converted to Tensor.
- """
- def __init__(self, keys):
- self.keys = keys
- def __call__(self, results):
- """Call function to convert image in results to :obj:`torch.Tensor` and
- transpose the channel order.
- Args:
- results (dict): Result dict contains the image data to convert.
- Returns:
- dict: The result dict contains the image converted
- to :obj:`torch.Tensor` and permuted to (C, H, W) order.
- """
- for key in self.keys:
- img = results[key]
- if len(img.shape) < 3:
- img = np.expand_dims(img, -1)
- results[key] = to_tensor(img).permute(2, 0, 1).contiguous()
- return results
- def __repr__(self):
- return self.__class__.__name__ + f'(keys={self.keys})'
- @TRANSFORMS.register_module()
- class Transpose:
- """Transpose some results by given keys.
- Args:
- keys (Sequence[str]): Keys of results to be transposed.
- order (Sequence[int]): Order of transpose.
- """
- def __init__(self, keys, order):
- self.keys = keys
- self.order = order
- def __call__(self, results):
- """Call function to transpose the channel order of data in results.
- Args:
- results (dict): Result dict contains the data to transpose.
- Returns:
- dict: The result dict contains the data transposed to \
- ``self.order``.
- """
- for key in self.keys:
- results[key] = results[key].transpose(self.order)
- return results
- def __repr__(self):
- return self.__class__.__name__ + \
- f'(keys={self.keys}, order={self.order})'
- @TRANSFORMS.register_module()
- class WrapFieldsToLists:
- """Wrap fields of the data dictionary into lists for evaluation.
- This class can be used as a last step of a test or validation
- pipeline for single image evaluation or inference.
- Example:
- >>> test_pipeline = [
- >>> dict(type='LoadImageFromFile'),
- >>> dict(type='Normalize',
- mean=[123.675, 116.28, 103.53],
- std=[58.395, 57.12, 57.375],
- to_rgb=True),
- >>> dict(type='Pad', size_divisor=32),
- >>> dict(type='ImageToTensor', keys=['img']),
- >>> dict(type='Collect', keys=['img']),
- >>> dict(type='WrapFieldsToLists')
- >>> ]
- """
- def __call__(self, results):
- """Call function to wrap fields into lists.
- Args:
- results (dict): Result dict contains the data to wrap.
- Returns:
- dict: The result dict where value of ``self.keys`` are wrapped \
- into list.
- """
- # Wrap dict fields into lists
- for key, val in results.items():
- results[key] = [val]
- return results
- def __repr__(self):
- return f'{self.__class__.__name__}()'
|