123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264 |
- # Copyright (c) OpenMMLab. All rights reserved.
- from typing import List, Optional, Union
- import numpy as np
- from mmcv.transforms import RandomChoice
- from mmcv.transforms.utils import cache_randomness
- from mmengine.config import ConfigDict
- from mmdet.registry import TRANSFORMS
- # AutoAugment uses reinforcement learning to search for
- # some widely useful data augmentation strategies,
- # here we provide AUTOAUG_POLICIES_V0.
- # For AUTOAUG_POLICIES_V0, each tuple is an augmentation
- # operation of the form (operation, probability, magnitude).
- # Each element in policies is a policy that will be applied
- # sequentially on the image.
- # RandAugment defines a data augmentation search space, RANDAUG_SPACE,
- # sampling 1~3 data augmentations each time, and
- # setting the magnitude of each data augmentation randomly,
- # which will be applied sequentially on the image.
- _MAX_LEVEL = 10
- AUTOAUG_POLICIES_V0 = [
- [('Equalize', 0.8, 1), ('ShearY', 0.8, 4)],
- [('Color', 0.4, 9), ('Equalize', 0.6, 3)],
- [('Color', 0.4, 1), ('Rotate', 0.6, 8)],
- [('Solarize', 0.8, 3), ('Equalize', 0.4, 7)],
- [('Solarize', 0.4, 2), ('Solarize', 0.6, 2)],
- [('Color', 0.2, 0), ('Equalize', 0.8, 8)],
- [('Equalize', 0.4, 8), ('SolarizeAdd', 0.8, 3)],
- [('ShearX', 0.2, 9), ('Rotate', 0.6, 8)],
- [('Color', 0.6, 1), ('Equalize', 1.0, 2)],
- [('Invert', 0.4, 9), ('Rotate', 0.6, 0)],
- [('Equalize', 1.0, 9), ('ShearY', 0.6, 3)],
- [('Color', 0.4, 7), ('Equalize', 0.6, 0)],
- [('Posterize', 0.4, 6), ('AutoContrast', 0.4, 7)],
- [('Solarize', 0.6, 8), ('Color', 0.6, 9)],
- [('Solarize', 0.2, 4), ('Rotate', 0.8, 9)],
- [('Rotate', 1.0, 7), ('TranslateY', 0.8, 9)],
- [('ShearX', 0.0, 0), ('Solarize', 0.8, 4)],
- [('ShearY', 0.8, 0), ('Color', 0.6, 4)],
- [('Color', 1.0, 0), ('Rotate', 0.6, 2)],
- [('Equalize', 0.8, 4), ('Equalize', 0.0, 8)],
- [('Equalize', 1.0, 4), ('AutoContrast', 0.6, 2)],
- [('ShearY', 0.4, 7), ('SolarizeAdd', 0.6, 7)],
- [('Posterize', 0.8, 2), ('Solarize', 0.6, 10)],
- [('Solarize', 0.6, 8), ('Equalize', 0.6, 1)],
- [('Color', 0.8, 6), ('Rotate', 0.4, 5)],
- ]
- def policies_v0():
- """Autoaugment policies that was used in AutoAugment Paper."""
- policies = list()
- for policy_args in AUTOAUG_POLICIES_V0:
- policy = list()
- for args in policy_args:
- policy.append(dict(type=args[0], prob=args[1], level=args[2]))
- policies.append(policy)
- return policies
- RANDAUG_SPACE = [[dict(type='AutoContrast')], [dict(type='Equalize')],
- [dict(type='Invert')], [dict(type='Rotate')],
- [dict(type='Posterize')], [dict(type='Solarize')],
- [dict(type='SolarizeAdd')], [dict(type='Color')],
- [dict(type='Contrast')], [dict(type='Brightness')],
- [dict(type='Sharpness')], [dict(type='ShearX')],
- [dict(type='ShearY')], [dict(type='TranslateX')],
- [dict(type='TranslateY')]]
- def level_to_mag(level: Optional[int], min_mag: float,
- max_mag: float) -> float:
- """Map from level to magnitude."""
- if level is None:
- return round(np.random.rand() * (max_mag - min_mag) + min_mag, 1)
- else:
- return round(level / _MAX_LEVEL * (max_mag - min_mag) + min_mag, 1)
- @TRANSFORMS.register_module()
- class AutoAugment(RandomChoice):
- """Auto augmentation.
- This data augmentation is proposed in `AutoAugment: Learning
- Augmentation Policies from Data <https://arxiv.org/abs/1805.09501>`_
- and in `Learning Data Augmentation Strategies for Object Detection
- <https://arxiv.org/pdf/1906.11172>`_.
- Required Keys:
- - img
- - gt_bboxes (BaseBoxes[torch.float32]) (optional)
- - gt_bboxes_labels (np.int64) (optional)
- - gt_masks (BitmapMasks | PolygonMasks) (optional)
- - gt_ignore_flags (bool) (optional)
- - gt_seg_map (np.uint8) (optional)
- Modified Keys:
- - img
- - img_shape
- - gt_bboxes
- - gt_bboxes_labels
- - gt_masks
- - gt_ignore_flags
- - gt_seg_map
- Added Keys:
- - homography_matrix
- Args:
- policies (List[List[Union[dict, ConfigDict]]]):
- The policies of auto augmentation.Each policy in ``policies``
- is a specific augmentation policy, and is composed by several
- augmentations. When AutoAugment is called, a random policy in
- ``policies`` will be selected to augment images.
- Defaults to policy_v0().
- prob (list[float], optional): The probabilities associated
- with each policy. The length should be equal to the policy
- number and the sum should be 1. If not given, a uniform
- distribution will be assumed. Defaults to None.
- Examples:
- >>> policies = [
- >>> [
- >>> dict(type='Sharpness', prob=0.0, level=8),
- >>> dict(type='ShearX', prob=0.4, level=0,)
- >>> ],
- >>> [
- >>> dict(type='Rotate', prob=0.6, level=10),
- >>> dict(type='Color', prob=1.0, level=6)
- >>> ]
- >>> ]
- >>> augmentation = AutoAugment(policies)
- >>> img = np.ones(100, 100, 3)
- >>> gt_bboxes = np.ones(10, 4)
- >>> results = dict(img=img, gt_bboxes=gt_bboxes)
- >>> results = augmentation(results)
- """
- def __init__(self,
- policies: List[List[Union[dict, ConfigDict]]] = policies_v0(),
- prob: Optional[List[float]] = None) -> None:
- assert isinstance(policies, list) and len(policies) > 0, \
- 'Policies must be a non-empty list.'
- for policy in policies:
- assert isinstance(policy, list) and len(policy) > 0, \
- 'Each policy in policies must be a non-empty list.'
- for augment in policy:
- assert isinstance(augment, dict) and 'type' in augment, \
- 'Each specific augmentation must be a dict with key' \
- ' "type".'
- super().__init__(transforms=policies, prob=prob)
- self.policies = policies
- def __repr__(self) -> str:
- return f'{self.__class__.__name__}(policies={self.policies}, ' \
- f'prob={self.prob})'
- @TRANSFORMS.register_module()
- class RandAugment(RandomChoice):
- """Rand augmentation.
- This data augmentation is proposed in `RandAugment:
- Practical automated data augmentation with a reduced
- search space <https://arxiv.org/abs/1909.13719>`_.
- Required Keys:
- - img
- - gt_bboxes (BaseBoxes[torch.float32]) (optional)
- - gt_bboxes_labels (np.int64) (optional)
- - gt_masks (BitmapMasks | PolygonMasks) (optional)
- - gt_ignore_flags (bool) (optional)
- - gt_seg_map (np.uint8) (optional)
- Modified Keys:
- - img
- - img_shape
- - gt_bboxes
- - gt_bboxes_labels
- - gt_masks
- - gt_ignore_flags
- - gt_seg_map
- Added Keys:
- - homography_matrix
- Args:
- aug_space (List[List[Union[dict, ConfigDict]]]): The augmentation space
- of rand augmentation. Each augmentation transform in ``aug_space``
- is a specific transform, and is composed by several augmentations.
- When RandAugment is called, a random transform in ``aug_space``
- will be selected to augment images. Defaults to aug_space.
- aug_num (int): Number of augmentation to apply equentially.
- Defaults to 2.
- prob (list[float], optional): The probabilities associated with
- each augmentation. The length should be equal to the
- augmentation space and the sum should be 1. If not given,
- a uniform distribution will be assumed. Defaults to None.
- Examples:
- >>> aug_space = [
- >>> dict(type='Sharpness'),
- >>> dict(type='ShearX'),
- >>> dict(type='Color'),
- >>> ],
- >>> augmentation = RandAugment(aug_space)
- >>> img = np.ones(100, 100, 3)
- >>> gt_bboxes = np.ones(10, 4)
- >>> results = dict(img=img, gt_bboxes=gt_bboxes)
- >>> results = augmentation(results)
- """
- def __init__(self,
- aug_space: List[Union[dict, ConfigDict]] = RANDAUG_SPACE,
- aug_num: int = 2,
- prob: Optional[List[float]] = None) -> None:
- assert isinstance(aug_space, list) and len(aug_space) > 0, \
- 'Augmentation space must be a non-empty list.'
- for aug in aug_space:
- assert isinstance(aug, list) and len(aug) == 1, \
- 'Each augmentation in aug_space must be a list.'
- for transform in aug:
- assert isinstance(transform, dict) and 'type' in transform, \
- 'Each specific transform must be a dict with key' \
- ' "type".'
- super().__init__(transforms=aug_space, prob=prob)
- self.aug_space = aug_space
- self.aug_num = aug_num
- @cache_randomness
- def random_pipeline_index(self):
- indices = np.arange(len(self.transforms))
- return np.random.choice(
- indices, self.aug_num, p=self.prob, replace=False)
- def transform(self, results: dict) -> dict:
- """Transform function to use RandAugment.
- Args:
- results (dict): Result dict from loading pipeline.
- Returns:
- dict: Result dict with RandAugment.
- """
- for idx in self.random_pipeline_index():
- results = self.transforms[idx](results)
- return results
- def __repr__(self) -> str:
- return f'{self.__class__.__name__}(' \
- f'aug_space={self.aug_space}, '\
- f'aug_num={self.aug_num}, ' \
- f'prob={self.prob})'
|