123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287 |
- # Copyright (c) OpenMMLab. All rights reserved.
- import os.path as osp
- from typing import Callable, List, Optional, Sequence, Union
- from mmdet.registry import DATASETS
- from .api_wrappers import COCOPanoptic
- from .coco import CocoDataset
- @DATASETS.register_module()
- class CocoPanopticDataset(CocoDataset):
- """Coco dataset for Panoptic segmentation.
- The annotation format is shown as follows. The `ann` field is optional
- for testing.
- .. code-block:: none
- [
- {
- 'filename': f'{image_id:012}.png',
- 'image_id':9
- 'segments_info':
- [
- {
- 'id': 8345037, (segment_id in panoptic png,
- convert from rgb)
- 'category_id': 51,
- 'iscrowd': 0,
- 'bbox': (x1, y1, w, h),
- 'area': 24315
- },
- ...
- ]
- },
- ...
- ]
- Args:
- ann_file (str): Annotation file path. Defaults to ''.
- metainfo (dict, optional): Meta information for dataset, such as class
- information. Defaults to None.
- data_root (str, optional): The root directory for ``data_prefix`` and
- ``ann_file``. Defaults to None.
- data_prefix (dict, optional): Prefix for training data. Defaults to
- ``dict(img=None, ann=None, seg=None)``. The prefix ``seg`` which is
- for panoptic segmentation map must be not None.
- filter_cfg (dict, optional): Config for filter data. Defaults to None.
- indices (int or Sequence[int], optional): Support using first few
- data in annotation file to facilitate training/testing on a smaller
- dataset. Defaults to None which means using all ``data_infos``.
- serialize_data (bool, optional): Whether to hold memory using
- serialized objects, when enabled, data loader workers can use
- shared RAM from master process instead of making a copy. Defaults
- to True.
- pipeline (list, optional): Processing pipeline. Defaults to [].
- test_mode (bool, optional): ``test_mode=True`` means in test phase.
- Defaults to False.
- lazy_init (bool, optional): Whether to load annotation during
- instantiation. In some cases, such as visualization, only the meta
- information of the dataset is needed, which is not necessary to
- load annotation file. ``Basedataset`` can skip load annotations to
- save time by set ``lazy_init=False``. Defaults to False.
- max_refetch (int, optional): If ``Basedataset.prepare_data`` get a
- None img. The maximum extra number of cycles to get a valid
- image. Defaults to 1000.
- """
- METAINFO = {
- 'classes':
- ('person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train',
- 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign',
- 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep',
- 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella',
- 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard',
- 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard',
- 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork',
- 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange',
- 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair',
- 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv',
- 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave',
- 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase',
- 'scissors', 'teddy bear', 'hair drier', 'toothbrush', 'banner',
- 'blanket', 'bridge', 'cardboard', 'counter', 'curtain', 'door-stuff',
- 'floor-wood', 'flower', 'fruit', 'gravel', 'house', 'light',
- 'mirror-stuff', 'net', 'pillow', 'platform', 'playingfield',
- 'railroad', 'river', 'road', 'roof', 'sand', 'sea', 'shelf', 'snow',
- 'stairs', 'tent', 'towel', 'wall-brick', 'wall-stone', 'wall-tile',
- 'wall-wood', 'water-other', 'window-blind', 'window-other',
- 'tree-merged', 'fence-merged', 'ceiling-merged', 'sky-other-merged',
- 'cabinet-merged', 'table-merged', 'floor-other-merged',
- 'pavement-merged', 'mountain-merged', 'grass-merged', 'dirt-merged',
- 'paper-merged', 'food-other-merged', 'building-other-merged',
- 'rock-merged', 'wall-other-merged', 'rug-merged'),
- 'thing_classes':
- ('person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train',
- 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign',
- 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep',
- 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella',
- 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard',
- 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard',
- 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork',
- 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange',
- 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair',
- 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv',
- 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave',
- 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase',
- 'scissors', 'teddy bear', 'hair drier', 'toothbrush'),
- 'stuff_classes':
- ('banner', 'blanket', 'bridge', 'cardboard', 'counter', 'curtain',
- 'door-stuff', 'floor-wood', 'flower', 'fruit', 'gravel', 'house',
- 'light', 'mirror-stuff', 'net', 'pillow', 'platform', 'playingfield',
- 'railroad', 'river', 'road', 'roof', 'sand', 'sea', 'shelf', 'snow',
- 'stairs', 'tent', 'towel', 'wall-brick', 'wall-stone', 'wall-tile',
- 'wall-wood', 'water-other', 'window-blind', 'window-other',
- 'tree-merged', 'fence-merged', 'ceiling-merged', 'sky-other-merged',
- 'cabinet-merged', 'table-merged', 'floor-other-merged',
- 'pavement-merged', 'mountain-merged', 'grass-merged', 'dirt-merged',
- 'paper-merged', 'food-other-merged', 'building-other-merged',
- 'rock-merged', 'wall-other-merged', 'rug-merged'),
- 'palette':
- [(220, 20, 60), (119, 11, 32), (0, 0, 142), (0, 0, 230), (106, 0, 228),
- (0, 60, 100), (0, 80, 100), (0, 0, 70), (0, 0, 192), (250, 170, 30),
- (100, 170, 30), (220, 220, 0), (175, 116, 175), (250, 0, 30),
- (165, 42, 42), (255, 77, 255), (0, 226, 252), (182, 182, 255),
- (0, 82, 0), (120, 166, 157), (110, 76, 0), (174, 57, 255),
- (199, 100, 0), (72, 0, 118), (255, 179, 240), (0, 125, 92),
- (209, 0, 151), (188, 208, 182), (0, 220, 176), (255, 99, 164),
- (92, 0, 73), (133, 129, 255), (78, 180, 255), (0, 228, 0),
- (174, 255, 243), (45, 89, 255), (134, 134, 103), (145, 148, 174),
- (255, 208, 186), (197, 226, 255), (171, 134, 1), (109, 63, 54),
- (207, 138, 255), (151, 0, 95), (9, 80, 61), (84, 105, 51),
- (74, 65, 105), (166, 196, 102), (208, 195, 210), (255, 109, 65),
- (0, 143, 149), (179, 0, 194), (209, 99, 106), (5, 121, 0),
- (227, 255, 205), (147, 186, 208), (153, 69, 1), (3, 95, 161),
- (163, 255, 0), (119, 0, 170), (0, 182, 199), (0, 165, 120),
- (183, 130, 88), (95, 32, 0), (130, 114, 135), (110, 129, 133),
- (166, 74, 118), (219, 142, 185), (79, 210, 114), (178, 90, 62),
- (65, 70, 15), (127, 167, 115), (59, 105, 106), (142, 108, 45),
- (196, 172, 0), (95, 54, 80), (128, 76, 255), (201, 57, 1),
- (246, 0, 122), (191, 162, 208), (255, 255, 128), (147, 211, 203),
- (150, 100, 100), (168, 171, 172), (146, 112, 198), (210, 170, 100),
- (92, 136, 89), (218, 88, 184), (241, 129, 0), (217, 17, 255),
- (124, 74, 181), (70, 70, 70), (255, 228, 255), (154, 208, 0),
- (193, 0, 92), (76, 91, 113), (255, 180, 195), (106, 154, 176),
- (230, 150, 140), (60, 143, 255), (128, 64, 128), (92, 82, 55),
- (254, 212, 124), (73, 77, 174), (255, 160, 98), (255, 255, 255),
- (104, 84, 109), (169, 164, 131), (225, 199, 255), (137, 54, 74),
- (135, 158, 223), (7, 246, 231), (107, 255, 200), (58, 41, 149),
- (183, 121, 142), (255, 73, 97), (107, 142, 35), (190, 153, 153),
- (146, 139, 141), (70, 130, 180), (134, 199, 156), (209, 226, 140),
- (96, 36, 108), (96, 96, 96), (64, 170, 64), (152, 251, 152),
- (208, 229, 228), (206, 186, 171), (152, 161, 64), (116, 112, 0),
- (0, 114, 143), (102, 102, 156), (250, 141, 255)]
- }
- COCOAPI = COCOPanoptic
- # ann_id is not unique in coco panoptic dataset.
- ANN_ID_UNIQUE = False
- def __init__(self,
- ann_file: str = '',
- metainfo: Optional[dict] = None,
- data_root: Optional[str] = None,
- data_prefix: dict = dict(img=None, ann=None, seg=None),
- filter_cfg: Optional[dict] = None,
- indices: Optional[Union[int, Sequence[int]]] = None,
- serialize_data: bool = True,
- pipeline: List[Union[dict, Callable]] = [],
- test_mode: bool = False,
- lazy_init: bool = False,
- max_refetch: int = 1000,
- backend_args: dict = None,
- **kwargs) -> None:
- super().__init__(
- ann_file=ann_file,
- metainfo=metainfo,
- data_root=data_root,
- data_prefix=data_prefix,
- filter_cfg=filter_cfg,
- indices=indices,
- serialize_data=serialize_data,
- pipeline=pipeline,
- test_mode=test_mode,
- lazy_init=lazy_init,
- max_refetch=max_refetch,
- backend_args=backend_args,
- **kwargs)
- def parse_data_info(self, raw_data_info: dict) -> dict:
- """Parse raw annotation to target format.
- Args:
- raw_data_info (dict): Raw data information load from ``ann_file``.
- Returns:
- dict: Parsed annotation.
- """
- img_info = raw_data_info['raw_img_info']
- ann_info = raw_data_info['raw_ann_info']
- # filter out unmatched annotations which have
- # same segment_id but belong to other image
- ann_info = [
- ann for ann in ann_info if ann['image_id'] == img_info['img_id']
- ]
- data_info = {}
- img_path = osp.join(self.data_prefix['img'], img_info['file_name'])
- if self.data_prefix.get('seg', None):
- seg_map_path = osp.join(
- self.data_prefix['seg'],
- img_info['file_name'].replace('jpg', 'png'))
- else:
- seg_map_path = None
- data_info['img_path'] = img_path
- data_info['img_id'] = img_info['img_id']
- data_info['seg_map_path'] = seg_map_path
- data_info['height'] = img_info['height']
- data_info['width'] = img_info['width']
- instances = []
- segments_info = []
- for ann in ann_info:
- instance = {}
- x1, y1, w, h = ann['bbox']
- if ann['area'] <= 0 or w < 1 or h < 1:
- continue
- bbox = [x1, y1, x1 + w, y1 + h]
- category_id = ann['category_id']
- contiguous_cat_id = self.cat2label[category_id]
- is_thing = self.coco.load_cats(ids=category_id)[0]['isthing']
- if is_thing:
- is_crowd = ann.get('iscrowd', False)
- instance['bbox'] = bbox
- instance['bbox_label'] = contiguous_cat_id
- if not is_crowd:
- instance['ignore_flag'] = 0
- else:
- instance['ignore_flag'] = 1
- is_thing = False
- segment_info = {
- 'id': ann['id'],
- 'category': contiguous_cat_id,
- 'is_thing': is_thing
- }
- segments_info.append(segment_info)
- if len(instance) > 0 and is_thing:
- instances.append(instance)
- data_info['instances'] = instances
- data_info['segments_info'] = segments_info
- return data_info
- def filter_data(self) -> List[dict]:
- """Filter images too small or without ground truth.
- Returns:
- List[dict]: ``self.data_list`` after filtering.
- """
- if self.test_mode:
- return self.data_list
- if self.filter_cfg is None:
- return self.data_list
- filter_empty_gt = self.filter_cfg.get('filter_empty_gt', False)
- min_size = self.filter_cfg.get('min_size', 0)
- ids_with_ann = set()
- # check whether images have legal thing annotations.
- for data_info in self.data_list:
- for segment_info in data_info['segments_info']:
- if not segment_info['is_thing']:
- continue
- ids_with_ann.add(data_info['img_id'])
- valid_data_list = []
- for data_info in self.data_list:
- img_id = data_info['img_id']
- width = data_info['width']
- height = data_info['height']
- if filter_empty_gt and img_id not in ids_with_ann:
- continue
- if min(width, height) >= min_size:
- valid_data_list.append(data_info)
- return valid_data_list
|