12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061 |
- # Copyright (c) OpenMMLab. All rights reserved.
- # Modified from https://github.com/facebookresearch/detectron2/blob/master/detectron2/data/datasets/cityscapes.py # noqa
- # and https://github.com/mcordts/cityscapesScripts/blob/master/cityscapesscripts/evaluation/evalInstanceLevelSemanticLabeling.py # noqa
- from typing import List
- from mmdet.registry import DATASETS
- from .coco import CocoDataset
- @DATASETS.register_module()
- class CityscapesDataset(CocoDataset):
- """Dataset for Cityscapes."""
- METAINFO = {
- 'classes': ('person', 'rider', 'car', 'truck', 'bus', 'train',
- 'motorcycle', 'bicycle'),
- 'palette': [(220, 20, 60), (255, 0, 0), (0, 0, 142), (0, 0, 70),
- (0, 60, 100), (0, 80, 100), (0, 0, 230), (119, 11, 32)]
- }
- def filter_data(self) -> List[dict]:
- """Filter annotations according to filter_cfg.
- Returns:
- List[dict]: Filtered results.
- """
- if self.test_mode:
- return self.data_list
- if self.filter_cfg is None:
- return self.data_list
- filter_empty_gt = self.filter_cfg.get('filter_empty_gt', False)
- min_size = self.filter_cfg.get('min_size', 0)
- # obtain images that contain annotation
- ids_with_ann = set(data_info['img_id'] for data_info in self.data_list)
- # obtain images that contain annotations of the required categories
- ids_in_cat = set()
- for i, class_id in enumerate(self.cat_ids):
- ids_in_cat |= set(self.cat_img_map[class_id])
- # merge the image id sets of the two conditions and use the merged set
- # to filter out images if self.filter_empty_gt=True
- ids_in_cat &= ids_with_ann
- valid_data_infos = []
- for i, data_info in enumerate(self.data_list):
- img_id = data_info['img_id']
- width = data_info['width']
- height = data_info['height']
- all_is_crowd = all([
- instance['ignore_flag'] == 1
- for instance in data_info['instances']
- ])
- if filter_empty_gt and (img_id not in ids_in_cat or all_is_crowd):
- continue
- if min(width, height) >= min_size:
- valid_data_infos.append(data_info)
- return valid_data_infos
|