本节中,我们将演示如何用 PyTorch 准备一个环境。
MMDetection 支持在 Linux,Windows 和 macOS 上运行。它需要 Python 3.7 以上,CUDA 9.2 以上和 PyTorch 1.6 以上。
如果你对 PyTorch 有经验并且已经安装了它,你可以直接跳转到[下一小节](#安装流程)。否则,你可以按照下述步骤进行准备。
步骤 0. 从官方网站下载并安装 Miniconda。
步骤 1. 创建并激活一个 conda 环境。
conda create --name openmmlab python=3.8 -y
conda activate openmmlab
步骤 2. 基于 PyTorch 官方说明安装 PyTorch。
在 GPU 平台上:
conda install pytorch torchvision -c pytorch
在 CPU 平台上:
conda install pytorch torchvision cpuonly -c pytorch
我们推荐用户参照我们的最佳实践安装 MMDetection。不过,整个过程也是可定制化的,更多信息请参考自定义安装章节。
步骤 0. 使用 MIM 安装 MMEngine 和 MMCV。
pip install -U openmim
mim install mmengine
mim install "mmcv>=2.0.0"
注意: 在 MMCV-v2.x 中,mmcv-full
改名为 mmcv
,如果你想安装不包含 CUDA 算子精简版,可以通过 mim install "mmcv-lite>=2.0.0rc1"
来安装。
步骤 1. 安装 MMDetection。
方案 a:如果你开发并直接运行 mmdet,从源码安装它:
git clone https://github.com/open-mmlab/mmdetection.git
cd mmdetection
pip install -v -e .
# "-v" 指详细说明,或更多的输出
# "-e" 表示在可编辑模式下安装项目,因此对代码所做的任何本地修改都会生效,从而无需重新安装。
方案 b:如果你将 mmdet 作为依赖或第三方 Python 包,使用 MIM 安装:
mim install mmdet
为了验证 MMDetection 是否安装正确,我们提供了一些示例代码来执行模型推理。
步骤 1. 我们需要下载配置文件和模型权重文件。
mim download mmdet --config rtmdet_tiny_8xb32-300e_coco --dest .
下载将需要几秒钟或更长时间,这取决于你的网络环境。完成后,你会在当前文件夹中发现两个文件 rtmdet_tiny_8xb32-300e_coco.py
和 rtmdet_tiny_8xb32-300e_coco_20220902_112414-78e30dcc.pth
。
步骤 2. 推理验证。
方案 a:如果你通过源码安装的 MMDetection,那么直接运行以下命令进行验证:
python demo/image_demo.py demo/demo.jpg rtmdet_tiny_8xb32-300e_coco.py --weights rtmdet_tiny_8xb32-300e_coco_20220902_112414-78e30dcc.pth --device cpu
你会在当前文件夹中的 outputs/vis
文件夹中看到一个新的图像 demo.jpg
,图像中包含有网络预测的检测框。
方案 b:如果你通过 MIM 安装的 MMDetection,那么可以打开你的 Python 解析器,复制并粘贴以下代码:
from mmdet.apis import init_detector, inference_detector
config_file = 'rtmdet_tiny_8xb32-300e_coco.py'
checkpoint_file = 'rtmdet_tiny_8xb32-300e_coco_20220902_112414-78e30dcc.pth'
model = init_detector(config_file, checkpoint_file, device='cpu') # or device='cuda:0'
inference_detector(model, 'demo/demo.jpg')
你将会看到一个包含 DetDataSample
的列表,预测结果在 pred_instance
里,包含有检测框,类别和得分。
在安装 PyTorch 时,你需要指定 CUDA 的版本。如果你不清楚应该选择哪一个,请遵循我们的建议:
请确保你的 GPU 驱动版本满足最低的版本需求,参阅 NVIDIA 官方的 CUDA 工具箱和相应的驱动版本关系表。
如果按照我们的最佳实践,安装 CUDA 运行时库就足够了,这是因为不需要在本地编译 CUDA 代码。但如果你希望从源码编译 MMCV,或是开发其他 CUDA 算子,那么就必须安装完整的 CUDA 工具链,参见 [NVIDIA 官网](https://developer.nvidia.com/cuda-downloads),另外还需要确保该 CUDA 工具链的版本与 PyTorch 安装时的配置相匹配(如用 `conda install` 安装 PyTorch 时指定的 cudatoolkit 版本)。
要使用 pip 而不是 MIM 来安装 MMEngine,请遵照 MMEngine 安装指南。
例如,你可以通过以下命令安装 MMEngine。
pip install mmengine
MMCV 包含 C++ 和 CUDA 扩展,因此其对 PyTorch 的依赖比较复杂。MIM 会自动解析这些依赖,选择合适的 MMCV 预编译包,使安装更简单,但它并不是必需的。
要使用 pip 而不是 MIM 来安装 MMCV,请遵照 MMCV 安装指南。它需要您用指定 url 的形式手动指定对应的 PyTorch 和 CUDA 版本。
例如,下述命令将会安装基于 PyTorch 1.12.x 和 CUDA 11.6 编译的 MMCV。
pip install "mmcv>=2.0.0" -f https://download.openmmlab.com/mmcv/dist/cu116/torch1.12.0/index.html
MMDetection 可以在 CPU 环境中构建。在 CPU 模式下,可以进行模型训练(需要 MMCV 版本 >= 2.0.0rc1)、测试或者推理。
但是,以下功能在该模式下不能使用:
因此,如果尝试训练/测试/推理包含上述算子的模型,将会报错。下表列出了将会受影响的相关算法。
操作 | 模型 |
---|---|
Deformable Convolution/Modulated Deformable Convolution | DCN、Guided Anchoring、RepPoints、CentripetalNet、VFNet、CascadeRPN、NAS-FCOS、DetectoRS |
MaskedConv2d | Guided Anchoring |
CARAFE | CARAFE |
SyncBatchNorm | ResNeSt |
Google Colab 通常已经包含了 PyTorch 环境,因此我们只需要安装 MMEngine,MMCV 和 MMDetection 即可,命令如下:
步骤 1. 使用 MIM 安装 MMEngine 和 MMCV。
!pip3 install openmim
!mim install mmengine
!mim install "mmcv>=2.0.0,<2.1.0"
步骤 2. 使用源码安装 MMDetection。
!git clone https://github.com/open-mmlab/mmdetection.git
%cd mmdetection
!pip install -e .
步骤 3. 验证安装是否成功。
import mmdet
print(mmdet.__version__)
# 预期输出:3.0.0 或其他版本号
在 Jupyter Notebook 中,感叹号 `!` 用于执行外部命令,而 `%cd` 是一个[魔术命令](https://ipython.readthedocs.io/en/stable/interactive/magics.html#magic-cd),用于切换 Python 的工作路径。
我们提供了一个 Dockerfile 来构建一个镜像。请确保你的 docker 版本 >=19.03。
# 基于 PyTorch 1.9,CUDA 11.1 构建镜像
# 如果你想要其他版本,只需要修改 Dockerfile
docker build -t mmdetection docker/
用以下命令运行 Docker 镜像:
docker run --gpus all --shm-size=8g -it -v {DATA_DIR}:/mmdetection/data mmdetection
如果你在安装过程中遇到一些问题,请先查看 FAQ 页面。如果没有找到解决方案,你也可以在 GitHub 上提出一个问题。
训练和测试的脚本已经在 PYTHONPATH
中进行了修改,以确保脚本使用当前目录中的 MMDetection。
要使环境中安装默认版本的 MMDetection 而不是当前正在使用的,可以删除出现在相关脚本中的代码:
PYTHONPATH="$(dirname $0)/..":$PYTHONPATH