Dockerfile 1.5 KB

12345678910111213141516171819202122232425262728293031323334353637383940
  1. ARG PYTORCH="1.9.0"
  2. ARG CUDA="11.1"
  3. ARG CUDNN="8"
  4. FROM pytorch/pytorch:${PYTORCH}-cuda${CUDA}-cudnn${CUDNN}-devel
  5. ENV TORCH_CUDA_ARCH_LIST="6.0 6.1 7.0 7.5 8.0 8.6+PTX" \
  6. TORCH_NVCC_FLAGS="-Xfatbin -compress-all" \
  7. CMAKE_PREFIX_PATH="$(dirname $(which conda))/../" \
  8. FORCE_CUDA="1"
  9. # Avoid Public GPG key error
  10. # https://github.com/NVIDIA/nvidia-docker/issues/1631
  11. RUN rm /etc/apt/sources.list.d/cuda.list \
  12. && rm /etc/apt/sources.list.d/nvidia-ml.list \
  13. && apt-key del 7fa2af80 \
  14. && apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/3bf863cc.pub \
  15. && apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1804/x86_64/7fa2af80.pub
  16. # (Optional, use Mirror to speed up downloads)
  17. # RUN sed -i 's/http:\/\/archive.ubuntu.com\/ubuntu\//http:\/\/mirrors.aliyun.com\/ubuntu\//g' /etc/apt/sources.list && \
  18. # pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
  19. # Install the required packages
  20. RUN apt-get update \
  21. && apt-get install -y ffmpeg libsm6 libxext6 git ninja-build libglib2.0-0 libsm6 libxrender-dev libxext6 \
  22. && apt-get clean \
  23. && rm -rf /var/lib/apt/lists/*
  24. # Install MMEngine and MMCV
  25. RUN pip install openmim && \
  26. mim install "mmengine>=0.7.1" "mmcv>=2.0.0rc4"
  27. # Install MMDetection
  28. RUN conda clean --all \
  29. && git clone https://github.com/open-mmlab/mmdetection.git /mmdetection \
  30. && cd /mmdetection \
  31. && pip install --no-cache-dir -e .
  32. WORKDIR /mmdetection