123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250 |
- _base_ = [
- '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py',
- './yolox_tta.py'
- ]
- img_scale = (640, 640) # width, height
- # model settings
- model = dict(
- type='YOLOX',
- data_preprocessor=dict(
- type='DetDataPreprocessor',
- pad_size_divisor=32,
- batch_augments=[
- dict(
- type='BatchSyncRandomResize',
- random_size_range=(480, 800),
- size_divisor=32,
- interval=10)
- ]),
- backbone=dict(
- type='CSPDarknet',
- deepen_factor=0.33,
- widen_factor=0.5,
- out_indices=(2, 3, 4),
- use_depthwise=False,
- spp_kernal_sizes=(5, 9, 13),
- norm_cfg=dict(type='BN', momentum=0.03, eps=0.001),
- act_cfg=dict(type='Swish'),
- ),
- neck=dict(
- type='YOLOXPAFPN',
- in_channels=[128, 256, 512],
- out_channels=128,
- num_csp_blocks=1,
- use_depthwise=False,
- upsample_cfg=dict(scale_factor=2, mode='nearest'),
- norm_cfg=dict(type='BN', momentum=0.03, eps=0.001),
- act_cfg=dict(type='Swish')),
- bbox_head=dict(
- type='YOLOXHead',
- num_classes=80,
- in_channels=128,
- feat_channels=128,
- stacked_convs=2,
- strides=(8, 16, 32),
- use_depthwise=False,
- norm_cfg=dict(type='BN', momentum=0.03, eps=0.001),
- act_cfg=dict(type='Swish'),
- loss_cls=dict(
- type='CrossEntropyLoss',
- use_sigmoid=True,
- reduction='sum',
- loss_weight=1.0),
- loss_bbox=dict(
- type='IoULoss',
- mode='square',
- eps=1e-16,
- reduction='sum',
- loss_weight=5.0),
- loss_obj=dict(
- type='CrossEntropyLoss',
- use_sigmoid=True,
- reduction='sum',
- loss_weight=1.0),
- loss_l1=dict(type='L1Loss', reduction='sum', loss_weight=1.0)),
- train_cfg=dict(assigner=dict(type='SimOTAAssigner', center_radius=2.5)),
- # In order to align the source code, the threshold of the val phase is
- # 0.01, and the threshold of the test phase is 0.001.
- test_cfg=dict(score_thr=0.01, nms=dict(type='nms', iou_threshold=0.65)))
- # dataset settings
- data_root = 'data/coco/'
- dataset_type = 'CocoDataset'
- # Example to use different file client
- # Method 1: simply set the data root and let the file I/O module
- # automatically infer from prefix (not support LMDB and Memcache yet)
- # data_root = 's3://openmmlab/datasets/detection/coco/'
- # Method 2: Use `backend_args`, `file_client_args` in versions before 3.0.0rc6
- # backend_args = dict(
- # backend='petrel',
- # path_mapping=dict({
- # './data/': 's3://openmmlab/datasets/detection/',
- # 'data/': 's3://openmmlab/datasets/detection/'
- # }))
- backend_args = None
- train_pipeline = [
- dict(type='Mosaic', img_scale=img_scale, pad_val=114.0),
- dict(
- type='RandomAffine',
- scaling_ratio_range=(0.1, 2),
- # img_scale is (width, height)
- border=(-img_scale[0] // 2, -img_scale[1] // 2)),
- dict(
- type='MixUp',
- img_scale=img_scale,
- ratio_range=(0.8, 1.6),
- pad_val=114.0),
- dict(type='YOLOXHSVRandomAug'),
- dict(type='RandomFlip', prob=0.5),
- # According to the official implementation, multi-scale
- # training is not considered here but in the
- # 'mmdet/models/detectors/yolox.py'.
- # Resize and Pad are for the last 15 epochs when Mosaic,
- # RandomAffine, and MixUp are closed by YOLOXModeSwitchHook.
- dict(type='Resize', scale=img_scale, keep_ratio=True),
- dict(
- type='Pad',
- pad_to_square=True,
- # If the image is three-channel, the pad value needs
- # to be set separately for each channel.
- pad_val=dict(img=(114.0, 114.0, 114.0))),
- dict(type='FilterAnnotations', min_gt_bbox_wh=(1, 1), keep_empty=False),
- dict(type='PackDetInputs')
- ]
- train_dataset = dict(
- # use MultiImageMixDataset wrapper to support mosaic and mixup
- type='MultiImageMixDataset',
- dataset=dict(
- type=dataset_type,
- data_root=data_root,
- ann_file='annotations/instances_train2017.json',
- data_prefix=dict(img='train2017/'),
- pipeline=[
- dict(type='LoadImageFromFile', backend_args=backend_args),
- dict(type='LoadAnnotations', with_bbox=True)
- ],
- filter_cfg=dict(filter_empty_gt=False, min_size=32),
- backend_args=backend_args),
- pipeline=train_pipeline)
- test_pipeline = [
- dict(type='LoadImageFromFile', backend_args=backend_args),
- dict(type='Resize', scale=img_scale, keep_ratio=True),
- dict(
- type='Pad',
- pad_to_square=True,
- pad_val=dict(img=(114.0, 114.0, 114.0))),
- dict(type='LoadAnnotations', with_bbox=True),
- dict(
- type='PackDetInputs',
- meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
- 'scale_factor'))
- ]
- train_dataloader = dict(
- batch_size=8,
- num_workers=4,
- persistent_workers=True,
- sampler=dict(type='DefaultSampler', shuffle=True),
- dataset=train_dataset)
- val_dataloader = dict(
- batch_size=8,
- num_workers=4,
- persistent_workers=True,
- drop_last=False,
- sampler=dict(type='DefaultSampler', shuffle=False),
- dataset=dict(
- type=dataset_type,
- data_root=data_root,
- ann_file='annotations/instances_val2017.json',
- data_prefix=dict(img='val2017/'),
- test_mode=True,
- pipeline=test_pipeline,
- backend_args=backend_args))
- test_dataloader = val_dataloader
- val_evaluator = dict(
- type='CocoMetric',
- ann_file=data_root + 'annotations/instances_val2017.json',
- metric='bbox',
- backend_args=backend_args)
- test_evaluator = val_evaluator
- # training settings
- max_epochs = 300
- num_last_epochs = 15
- interval = 10
- train_cfg = dict(max_epochs=max_epochs, val_interval=interval)
- # optimizer
- # default 8 gpu
- base_lr = 0.01
- optim_wrapper = dict(
- type='OptimWrapper',
- optimizer=dict(
- type='SGD', lr=base_lr, momentum=0.9, weight_decay=5e-4,
- nesterov=True),
- paramwise_cfg=dict(norm_decay_mult=0., bias_decay_mult=0.))
- # learning rate
- param_scheduler = [
- dict(
- # use quadratic formula to warm up 5 epochs
- # and lr is updated by iteration
- # TODO: fix default scope in get function
- type='mmdet.QuadraticWarmupLR',
- by_epoch=True,
- begin=0,
- end=5,
- convert_to_iter_based=True),
- dict(
- # use cosine lr from 5 to 285 epoch
- type='CosineAnnealingLR',
- eta_min=base_lr * 0.05,
- begin=5,
- T_max=max_epochs - num_last_epochs,
- end=max_epochs - num_last_epochs,
- by_epoch=True,
- convert_to_iter_based=True),
- dict(
- # use fixed lr during last 15 epochs
- type='ConstantLR',
- by_epoch=True,
- factor=1,
- begin=max_epochs - num_last_epochs,
- end=max_epochs,
- )
- ]
- default_hooks = dict(
- checkpoint=dict(
- interval=interval,
- max_keep_ckpts=3 # only keep latest 3 checkpoints
- ))
- custom_hooks = [
- dict(
- type='YOLOXModeSwitchHook',
- num_last_epochs=num_last_epochs,
- priority=48),
- dict(type='SyncNormHook', priority=48),
- dict(
- type='EMAHook',
- ema_type='ExpMomentumEMA',
- momentum=0.0001,
- update_buffers=True,
- priority=49)
- ]
- # NOTE: `auto_scale_lr` is for automatically scaling LR,
- # USER SHOULD NOT CHANGE ITS VALUES.
- # base_batch_size = (8 GPUs) x (8 samples per GPU)
- auto_scale_lr = dict(base_batch_size=64)
|