yolof_r50-c5_8xb8-iter-1x_coco.py 1.0 KB

1234567891011121314151617181920212223242526272829303132
  1. _base_ = './yolof_r50-c5_8xb8-1x_coco.py'
  2. # We implemented the iter-based config according to the source code.
  3. # COCO dataset has 117266 images after filtering. We use 8 gpu and
  4. # 8 batch size training, so 22500 is equivalent to
  5. # 22500/(117266/(8x8))=12.3 epoch, 15000 is equivalent to 8.2 epoch,
  6. # 20000 is equivalent to 10.9 epoch. Due to lr(0.12) is large,
  7. # the iter-based and epoch-based setting have about 0.2 difference on
  8. # the mAP evaluation value.
  9. train_cfg = dict(
  10. _delete_=True,
  11. type='IterBasedTrainLoop',
  12. max_iters=22500,
  13. val_interval=4500)
  14. # learning rate policy
  15. param_scheduler = [
  16. dict(
  17. type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),
  18. dict(
  19. type='MultiStepLR',
  20. begin=0,
  21. end=22500,
  22. by_epoch=False,
  23. milestones=[15000, 20000],
  24. gamma=0.1)
  25. ]
  26. train_dataloader = dict(sampler=dict(type='InfiniteSampler'))
  27. default_hooks = dict(checkpoint=dict(by_epoch=False, interval=2500))
  28. log_processor = dict(by_epoch=False)