123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167 |
- _base_ = ['../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py']
- # model settings
- data_preprocessor = dict(
- type='DetDataPreprocessor',
- mean=[0, 0, 0],
- std=[255., 255., 255.],
- bgr_to_rgb=True,
- pad_size_divisor=32)
- model = dict(
- type='YOLOV3',
- data_preprocessor=data_preprocessor,
- backbone=dict(
- type='Darknet',
- depth=53,
- out_indices=(3, 4, 5),
- init_cfg=dict(type='Pretrained', checkpoint='open-mmlab://darknet53')),
- neck=dict(
- type='YOLOV3Neck',
- num_scales=3,
- in_channels=[1024, 512, 256],
- out_channels=[512, 256, 128]),
- bbox_head=dict(
- type='YOLOV3Head',
- num_classes=80,
- in_channels=[512, 256, 128],
- out_channels=[1024, 512, 256],
- anchor_generator=dict(
- type='YOLOAnchorGenerator',
- base_sizes=[[(116, 90), (156, 198), (373, 326)],
- [(30, 61), (62, 45), (59, 119)],
- [(10, 13), (16, 30), (33, 23)]],
- strides=[32, 16, 8]),
- bbox_coder=dict(type='YOLOBBoxCoder'),
- featmap_strides=[32, 16, 8],
- loss_cls=dict(
- type='CrossEntropyLoss',
- use_sigmoid=True,
- loss_weight=1.0,
- reduction='sum'),
- loss_conf=dict(
- type='CrossEntropyLoss',
- use_sigmoid=True,
- loss_weight=1.0,
- reduction='sum'),
- loss_xy=dict(
- type='CrossEntropyLoss',
- use_sigmoid=True,
- loss_weight=2.0,
- reduction='sum'),
- loss_wh=dict(type='MSELoss', loss_weight=2.0, reduction='sum')),
- # training and testing settings
- train_cfg=dict(
- assigner=dict(
- type='GridAssigner',
- pos_iou_thr=0.5,
- neg_iou_thr=0.5,
- min_pos_iou=0)),
- test_cfg=dict(
- nms_pre=1000,
- min_bbox_size=0,
- score_thr=0.05,
- conf_thr=0.005,
- nms=dict(type='nms', iou_threshold=0.45),
- max_per_img=100))
- # dataset settings
- dataset_type = 'CocoDataset'
- data_root = 'data/coco/'
- # Example to use different file client
- # Method 1: simply set the data root and let the file I/O module
- # automatically infer from prefix (not support LMDB and Memcache yet)
- # data_root = 's3://openmmlab/datasets/detection/coco/'
- # Method 2: Use `backend_args`, `file_client_args` in versions before 3.0.0rc6
- # backend_args = dict(
- # backend='petrel',
- # path_mapping=dict({
- # './data/': 's3://openmmlab/datasets/detection/',
- # 'data/': 's3://openmmlab/datasets/detection/'
- # }))
- backend_args = None
- train_pipeline = [
- dict(type='LoadImageFromFile', backend_args=backend_args),
- dict(type='LoadAnnotations', with_bbox=True),
- dict(
- type='Expand',
- mean=data_preprocessor['mean'],
- to_rgb=data_preprocessor['bgr_to_rgb'],
- ratio_range=(1, 2)),
- dict(
- type='MinIoURandomCrop',
- min_ious=(0.4, 0.5, 0.6, 0.7, 0.8, 0.9),
- min_crop_size=0.3),
- dict(type='RandomResize', scale=[(320, 320), (608, 608)], keep_ratio=True),
- dict(type='RandomFlip', prob=0.5),
- dict(type='PhotoMetricDistortion'),
- dict(type='PackDetInputs')
- ]
- test_pipeline = [
- dict(type='LoadImageFromFile', backend_args=backend_args),
- dict(type='Resize', scale=(608, 608), keep_ratio=True),
- dict(type='LoadAnnotations', with_bbox=True),
- dict(
- type='PackDetInputs',
- meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
- 'scale_factor'))
- ]
- train_dataloader = dict(
- batch_size=8,
- num_workers=4,
- persistent_workers=True,
- sampler=dict(type='DefaultSampler', shuffle=True),
- batch_sampler=dict(type='AspectRatioBatchSampler'),
- dataset=dict(
- type=dataset_type,
- data_root=data_root,
- ann_file='annotations/instances_train2017.json',
- data_prefix=dict(img='train2017/'),
- filter_cfg=dict(filter_empty_gt=True, min_size=32),
- pipeline=train_pipeline,
- backend_args=backend_args))
- val_dataloader = dict(
- batch_size=1,
- num_workers=2,
- persistent_workers=True,
- drop_last=False,
- sampler=dict(type='DefaultSampler', shuffle=False),
- dataset=dict(
- type=dataset_type,
- data_root=data_root,
- ann_file='annotations/instances_val2017.json',
- data_prefix=dict(img='val2017/'),
- test_mode=True,
- pipeline=test_pipeline,
- backend_args=backend_args))
- test_dataloader = val_dataloader
- val_evaluator = dict(
- type='CocoMetric',
- ann_file=data_root + 'annotations/instances_val2017.json',
- metric='bbox',
- backend_args=backend_args)
- test_evaluator = val_evaluator
- train_cfg = dict(max_epochs=273, val_interval=7)
- # optimizer
- optim_wrapper = dict(
- type='OptimWrapper',
- optimizer=dict(type='SGD', lr=0.001, momentum=0.9, weight_decay=0.0005),
- clip_grad=dict(max_norm=35, norm_type=2))
- # learning policy
- param_scheduler = [
- dict(type='LinearLR', start_factor=0.1, by_epoch=False, begin=0, end=2000),
- dict(type='MultiStepLR', by_epoch=True, milestones=[218, 246], gamma=0.1)
- ]
- default_hooks = dict(checkpoint=dict(type='CheckpointHook', interval=7))
- # NOTE: `auto_scale_lr` is for automatically scaling LR,
- # USER SHOULD NOT CHANGE ITS VALUES.
- # base_batch_size = (8 GPUs) x (8 samples per GPU)
- auto_scale_lr = dict(base_batch_size=64)
|