12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364 |
- _base_ = [
- '../_base_/models/ssd300.py', '../_base_/datasets/wider_face.py',
- '../_base_/default_runtime.py', '../_base_/schedules/schedule_2x.py'
- ]
- model = dict(bbox_head=dict(num_classes=1))
- train_pipeline = [
- dict(type='LoadImageFromFile', backend_args=_base_.backend_args),
- dict(type='LoadAnnotations', with_bbox=True),
- dict(
- type='PhotoMetricDistortion',
- brightness_delta=32,
- contrast_range=(0.5, 1.5),
- saturation_range=(0.5, 1.5),
- hue_delta=18),
- dict(
- type='Expand',
- mean={{_base_.model.data_preprocessor.mean}},
- to_rgb={{_base_.model.data_preprocessor.bgr_to_rgb}},
- ratio_range=(1, 4)),
- dict(
- type='MinIoURandomCrop',
- min_ious=(0.1, 0.3, 0.5, 0.7, 0.9),
- min_crop_size=0.3),
- dict(type='Resize', scale=(300, 300), keep_ratio=False),
- dict(type='RandomFlip', prob=0.5),
- dict(type='PackDetInputs')
- ]
- test_pipeline = [
- dict(type='LoadImageFromFile', backend_args=_base_.backend_args),
- dict(type='Resize', scale=(300, 300), keep_ratio=False),
- dict(type='LoadAnnotations', with_bbox=True),
- dict(
- type='PackDetInputs',
- meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
- 'scale_factor'))
- ]
- dataset_type = 'WIDERFaceDataset'
- data_root = 'data/WIDERFace/'
- train_dataloader = dict(
- batch_size=32, num_workers=8, dataset=dict(pipeline=train_pipeline))
- val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
- test_dataloader = val_dataloader
- # learning rate
- param_scheduler = [
- dict(
- type='LinearLR', start_factor=0.001, by_epoch=False, begin=0,
- end=1000),
- dict(type='MultiStepLR', by_epoch=True, milestones=[16, 20], gamma=0.1)
- ]
- # optimizer
- optim_wrapper = dict(
- optimizer=dict(lr=0.012, momentum=0.9, weight_decay=5e-4),
- clip_grad=dict(max_norm=35, norm_type=2))
- # NOTE: `auto_scale_lr` is for automatically scaling LR,
- # USER SHOULD NOT CHANGE ITS VALUES.
- # base_batch_size = (8 GPUs) x (32 samples per GPU)
- auto_scale_lr = dict(base_batch_size=256)
|