metafile.yml 3.0 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980
  1. Collections:
  2. - Name: Sparse R-CNN
  3. Metadata:
  4. Training Data: COCO
  5. Training Techniques:
  6. - SGD with Momentum
  7. - Weight Decay
  8. Training Resources: 8x V100 GPUs
  9. Architecture:
  10. - FPN
  11. - ResNet
  12. - Sparse R-CNN
  13. Paper:
  14. URL: https://arxiv.org/abs/2011.12450
  15. Title: 'Sparse R-CNN: End-to-End Object Detection with Learnable Proposals'
  16. README: configs/sparse_rcnn/README.md
  17. Code:
  18. URL: https://github.com/open-mmlab/mmdetection/blob/v2.9.0/mmdet/models/detectors/sparse_rcnn.py#L6
  19. Version: v2.9.0
  20. Models:
  21. - Name: sparse-rcnn_r50_fpn_1x_coco
  22. In Collection: Sparse R-CNN
  23. Config: configs/sparse_rcnn/sparse-rcnn_r50_fpn_1x_coco.py
  24. Metadata:
  25. Epochs: 12
  26. Results:
  27. - Task: Object Detection
  28. Dataset: COCO
  29. Metrics:
  30. box AP: 37.9
  31. Weights: https://download.openmmlab.com/mmdetection/v2.0/sparse_rcnn/sparse_rcnn_r50_fpn_1x_coco/sparse_rcnn_r50_fpn_1x_coco_20201222_214453-dc79b137.pth
  32. - Name: sparse-rcnn_r50_fpn_ms-480-800-3x_coco
  33. In Collection: Sparse R-CNN
  34. Config: configs/sparse_rcnn/sparse-rcnn_r50_fpn_ms-480-800-3x_coco.py
  35. Metadata:
  36. Epochs: 36
  37. Results:
  38. - Task: Object Detection
  39. Dataset: COCO
  40. Metrics:
  41. box AP: 42.8
  42. Weights: https://download.openmmlab.com/mmdetection/v2.0/sparse_rcnn/sparse_rcnn_r50_fpn_mstrain_480-800_3x_coco/sparse_rcnn_r50_fpn_mstrain_480-800_3x_coco_20201218_154234-7bc5c054.pth
  43. - Name: sparse-rcnn_r50_fpn_300-proposals_crop-ms-480-800-3x_coco
  44. In Collection: Sparse R-CNN
  45. Config: configs/sparse_rcnn/sparse-rcnn_r50_fpn_300-proposals_crop-ms-480-800-3x_coco.py
  46. Metadata:
  47. Epochs: 36
  48. Results:
  49. - Task: Object Detection
  50. Dataset: COCO
  51. Metrics:
  52. box AP: 45.0
  53. Weights: https://download.openmmlab.com/mmdetection/v2.0/sparse_rcnn/sparse_rcnn_r50_fpn_300_proposals_crop_mstrain_480-800_3x_coco/sparse_rcnn_r50_fpn_300_proposals_crop_mstrain_480-800_3x_coco_20201223_024605-9fe92701.pth
  54. - Name: sparse-rcnn_r101_fpn_ms-480-800-3x_coco
  55. In Collection: Sparse R-CNN
  56. Config: configs/sparse_rcnn/sparse-rcnn_r101_fpn_ms-480-800-3x_coco.py
  57. Metadata:
  58. Epochs: 36
  59. Results:
  60. - Task: Object Detection
  61. Dataset: COCO
  62. Metrics:
  63. box AP: 44.2
  64. Weights: https://download.openmmlab.com/mmdetection/v2.0/sparse_rcnn/sparse_rcnn_r101_fpn_mstrain_480-800_3x_coco/sparse_rcnn_r101_fpn_mstrain_480-800_3x_coco_20201223_121552-6c46c9d6.pth
  65. - Name: sparse-rcnn_r101_fpn_300-proposals_crop-ms-480-800-3x_coco
  66. In Collection: Sparse R-CNN
  67. Config: configs/sparse_rcnn/sparse-rcnn_r101_fpn_300-proposals_crop-ms-480-800-3x_coco.py
  68. Metadata:
  69. Epochs: 36
  70. Results:
  71. - Task: Object Detection
  72. Dataset: COCO
  73. Metrics:
  74. box AP: 46.2
  75. Weights: https://download.openmmlab.com/mmdetection/v2.0/sparse_rcnn/sparse_rcnn_r101_fpn_300_proposals_crop_mstrain_480-800_3x_coco/sparse_rcnn_r101_fpn_300_proposals_crop_mstrain_480-800_3x_coco_20201223_023452-c23c3564.pth