metafile.yml 3.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115
  1. Collections:
  2. - Name: SOLO
  3. Metadata:
  4. Training Data: COCO
  5. Training Techniques:
  6. - SGD with Momentum
  7. - Weight Decay
  8. Training Resources: 8x V100 GPUs
  9. Architecture:
  10. - FPN
  11. - Convolution
  12. - ResNet
  13. Paper: https://arxiv.org/abs/1912.04488
  14. README: configs/solo/README.md
  15. Models:
  16. - Name: decoupled-solo_r50_fpn_1x_coco
  17. In Collection: SOLO
  18. Config: configs/solo/decoupled-solo_r50_fpn_1x_coco.py
  19. Metadata:
  20. Training Memory (GB): 7.8
  21. Epochs: 12
  22. inference time (ms/im):
  23. - value: 116.4
  24. hardware: V100
  25. backend: PyTorch
  26. batch size: 1
  27. mode: FP32
  28. resolution: (1333, 800)
  29. Results:
  30. - Task: Instance Segmentation
  31. Dataset: COCO
  32. Metrics:
  33. mask AP: 33.9
  34. Weights: https://download.openmmlab.com/mmdetection/v2.0/solo/decoupled_solo_r50_fpn_1x_coco/decoupled_solo_r50_fpn_1x_coco_20210820_233348-6337c589.pth
  35. - Name: decoupled-solo_r50_fpn_3x_coco
  36. In Collection: SOLO
  37. Config: configs/solo/decoupled-solo_r50_fpn_3x_coco.py
  38. Metadata:
  39. Training Memory (GB): 7.9
  40. Epochs: 36
  41. inference time (ms/im):
  42. - value: 117.2
  43. hardware: V100
  44. backend: PyTorch
  45. batch size: 1
  46. mode: FP32
  47. resolution: (1333, 800)
  48. Results:
  49. - Task: Instance Segmentation
  50. Dataset: COCO
  51. Metrics:
  52. mask AP: 36.7
  53. Weights: https://download.openmmlab.com/mmdetection/v2.0/solo/decoupled_solo_r50_fpn_3x_coco/decoupled_solo_r50_fpn_3x_coco_20210821_042504-7b3301ec.pth
  54. - Name: decoupled-solo-light_r50_fpn_3x_coco
  55. In Collection: SOLO
  56. Config: configs/solo/decoupled-solo-light_r50_fpn_3x_coco.py
  57. Metadata:
  58. Training Memory (GB): 2.2
  59. Epochs: 36
  60. inference time (ms/im):
  61. - value: 35.0
  62. hardware: V100
  63. backend: PyTorch
  64. batch size: 1
  65. mode: FP32
  66. resolution: (852, 512)
  67. Results:
  68. - Task: Instance Segmentation
  69. Dataset: COCO
  70. Metrics:
  71. mask AP: 32.9
  72. Weights: https://download.openmmlab.com/mmdetection/v2.0/solo/decoupled_solo_light_r50_fpn_3x_coco/decoupled_solo_light_r50_fpn_3x_coco_20210906_142703-e70e226f.pth
  73. - Name: solo_r50_fpn_3x_coco
  74. In Collection: SOLO
  75. Config: configs/solo/solo_r50_fpn_3x_coco.py
  76. Metadata:
  77. Training Memory (GB): 7.4
  78. Epochs: 36
  79. inference time (ms/im):
  80. - value: 94.2
  81. hardware: V100
  82. backend: PyTorch
  83. batch size: 1
  84. mode: FP32
  85. resolution: (1333, 800)
  86. Results:
  87. - Task: Instance Segmentation
  88. Dataset: COCO
  89. Metrics:
  90. mask AP: 35.9
  91. Weights: https://download.openmmlab.com/mmdetection/v2.0/solo/solo_r50_fpn_3x_coco/solo_r50_fpn_3x_coco_20210901_012353-11d224d7.pth
  92. - Name: solo_r50_fpn_1x_coco
  93. In Collection: SOLO
  94. Config: configs/solo/solo_r50_fpn_1x_coco.py
  95. Metadata:
  96. Training Memory (GB): 8.0
  97. Epochs: 12
  98. inference time (ms/im):
  99. - value: 95.1
  100. hardware: V100
  101. backend: PyTorch
  102. batch size: 1
  103. mode: FP32
  104. resolution: (1333, 800)
  105. Results:
  106. - Task: Instance Segmentation
  107. Dataset: COCO
  108. Metrics:
  109. mask AP: 33.1
  110. Weights: https://download.openmmlab.com/mmdetection/v2.0/solo/solo_r50_fpn_1x_coco/solo_r50_fpn_1x_coco_20210821_035055-2290a6b8.pth