123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115 |
- Collections:
- - Name: SOLO
- Metadata:
- Training Data: COCO
- Training Techniques:
- - SGD with Momentum
- - Weight Decay
- Training Resources: 8x V100 GPUs
- Architecture:
- - FPN
- - Convolution
- - ResNet
- Paper: https://arxiv.org/abs/1912.04488
- README: configs/solo/README.md
- Models:
- - Name: decoupled-solo_r50_fpn_1x_coco
- In Collection: SOLO
- Config: configs/solo/decoupled-solo_r50_fpn_1x_coco.py
- Metadata:
- Training Memory (GB): 7.8
- Epochs: 12
- inference time (ms/im):
- - value: 116.4
- hardware: V100
- backend: PyTorch
- batch size: 1
- mode: FP32
- resolution: (1333, 800)
- Results:
- - Task: Instance Segmentation
- Dataset: COCO
- Metrics:
- mask AP: 33.9
- Weights: https://download.openmmlab.com/mmdetection/v2.0/solo/decoupled_solo_r50_fpn_1x_coco/decoupled_solo_r50_fpn_1x_coco_20210820_233348-6337c589.pth
- - Name: decoupled-solo_r50_fpn_3x_coco
- In Collection: SOLO
- Config: configs/solo/decoupled-solo_r50_fpn_3x_coco.py
- Metadata:
- Training Memory (GB): 7.9
- Epochs: 36
- inference time (ms/im):
- - value: 117.2
- hardware: V100
- backend: PyTorch
- batch size: 1
- mode: FP32
- resolution: (1333, 800)
- Results:
- - Task: Instance Segmentation
- Dataset: COCO
- Metrics:
- mask AP: 36.7
- Weights: https://download.openmmlab.com/mmdetection/v2.0/solo/decoupled_solo_r50_fpn_3x_coco/decoupled_solo_r50_fpn_3x_coco_20210821_042504-7b3301ec.pth
- - Name: decoupled-solo-light_r50_fpn_3x_coco
- In Collection: SOLO
- Config: configs/solo/decoupled-solo-light_r50_fpn_3x_coco.py
- Metadata:
- Training Memory (GB): 2.2
- Epochs: 36
- inference time (ms/im):
- - value: 35.0
- hardware: V100
- backend: PyTorch
- batch size: 1
- mode: FP32
- resolution: (852, 512)
- Results:
- - Task: Instance Segmentation
- Dataset: COCO
- Metrics:
- mask AP: 32.9
- Weights: https://download.openmmlab.com/mmdetection/v2.0/solo/decoupled_solo_light_r50_fpn_3x_coco/decoupled_solo_light_r50_fpn_3x_coco_20210906_142703-e70e226f.pth
- - Name: solo_r50_fpn_3x_coco
- In Collection: SOLO
- Config: configs/solo/solo_r50_fpn_3x_coco.py
- Metadata:
- Training Memory (GB): 7.4
- Epochs: 36
- inference time (ms/im):
- - value: 94.2
- hardware: V100
- backend: PyTorch
- batch size: 1
- mode: FP32
- resolution: (1333, 800)
- Results:
- - Task: Instance Segmentation
- Dataset: COCO
- Metrics:
- mask AP: 35.9
- Weights: https://download.openmmlab.com/mmdetection/v2.0/solo/solo_r50_fpn_3x_coco/solo_r50_fpn_3x_coco_20210901_012353-11d224d7.pth
- - Name: solo_r50_fpn_1x_coco
- In Collection: SOLO
- Config: configs/solo/solo_r50_fpn_1x_coco.py
- Metadata:
- Training Memory (GB): 8.0
- Epochs: 12
- inference time (ms/im):
- - value: 95.1
- hardware: V100
- backend: PyTorch
- batch size: 1
- mode: FP32
- resolution: (1333, 800)
- Results:
- - Task: Instance Segmentation
- Dataset: COCO
- Metrics:
- mask AP: 33.1
- Weights: https://download.openmmlab.com/mmdetection/v2.0/solo/solo_r50_fpn_1x_coco/solo_r50_fpn_1x_coco_20210821_035055-2290a6b8.pth
|