metafile.yml 3.5 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192
  1. Collections:
  2. - Name: SimpleCopyPaste
  3. Metadata:
  4. Training Data: COCO
  5. Training Techniques:
  6. - SGD with Momentum
  7. - Weight Decay
  8. Training Resources: 32x A100 GPUs
  9. Architecture:
  10. - Softmax
  11. - RPN
  12. - Convolution
  13. - Dense Connections
  14. - FPN
  15. - ResNet
  16. - RoIAlign
  17. Paper:
  18. URL: https://arxiv.org/abs/2012.07177
  19. Title: "Simple Copy-Paste is a Strong Data Augmentation Method for Instance Segmentation"
  20. README: configs/simple_copy_paste/README.md
  21. Code:
  22. URL: https://github.com/open-mmlab/mmdetection/blob/v2.25.0/mmdet/datasets/pipelines/transforms.py#L2762
  23. Version: v2.25.0
  24. Models:
  25. - Name: mask-rcnn_r50_fpn_syncbn-all_rpn-2conv_ssj_32x2_270k_coco
  26. In Collection: SimpleCopyPaste
  27. Config: configs/simple_copy_paste/mask-rcnn_r50_fpn_rpn-2conv_4conv1fc_syncbn-all_32xb2-ssj-270k_coco.py
  28. Metadata:
  29. Training Memory (GB): 7.2
  30. Iterations: 270000
  31. Results:
  32. - Task: Object Detection
  33. Dataset: COCO
  34. Metrics:
  35. box AP: 43.5
  36. - Task: Instance Segmentation
  37. Dataset: COCO
  38. Metrics:
  39. mask AP: 39.1
  40. Weights: https://download.openmmlab.com/mmdetection/v2.0/simple_copy_paste/mask_rcnn_r50_fpn_syncbn-all_rpn-2conv_ssj_32x2_270k_coco/mask_rcnn_r50_fpn_syncbn-all_rpn-2conv_ssj_32x2_270k_coco_20220324_182940-33a100c5.pth
  41. - Name: mask-rcnn_r50_fpn_syncbn-all_rpn-2conv_ssj_32x2_90k_coco
  42. In Collection: SimpleCopyPaste
  43. Config: configs/simple_copy_paste/mask-rcnn_r50_fpn_rpn-2conv_4conv1fc_syncbn-all_32xb2-ssj-90k_coco.py
  44. Metadata:
  45. Training Memory (GB): 7.2
  46. Iterations: 90000
  47. Results:
  48. - Task: Object Detection
  49. Dataset: COCO
  50. Metrics:
  51. box AP: 43.3
  52. - Task: Instance Segmentation
  53. Dataset: COCO
  54. Metrics:
  55. mask AP: 39.0
  56. Weights: https://download.openmmlab.com/mmdetection/v2.0/simple_copy_paste/mask_rcnn_r50_fpn_syncbn-all_rpn-2conv_ssj_32x2_90k_coco/mask_rcnn_r50_fpn_syncbn-all_rpn-2conv_ssj_32x2_90k_coco_20220316_181409-f79c84c5.pth
  57. - Name: mask-rcnn_r50_fpn_syncbn-all_rpn-2conv_ssj_scp_32x2_270k_coco
  58. In Collection: SimpleCopyPaste
  59. Config: configs/simple_copy_paste/mask-rcnn_r50_fpn_rpn-2conv_4conv1fc_syncbn-all_32xb2-ssj-scp-270k_coco.py
  60. Metadata:
  61. Training Memory (GB): 7.2
  62. Iterations: 270000
  63. Results:
  64. - Task: Object Detection
  65. Dataset: COCO
  66. Metrics:
  67. box AP: 45.1
  68. - Task: Instance Segmentation
  69. Dataset: COCO
  70. Metrics:
  71. mask AP: 40.3
  72. Weights: https://download.openmmlab.com/mmdetection/v2.0/simple_copy_paste/mask_rcnn_r50_fpn_syncbn-all_rpn-2conv_ssj_scp_32x2_270k_coco/mask_rcnn_r50_fpn_syncbn-all_rpn-2conv_ssj_scp_32x2_270k_coco_20220324_201229-80ee90b7.pth
  73. - Name: mask-rcnn_r50_fpn_syncbn-all_rpn-2conv_ssj_scp_32x2_90k_coco
  74. In Collection: SimpleCopyPaste
  75. Config: configs/simple_copy_paste/mask-rcnn_r50_fpn_rpn-2conv_4conv1fc_syncbn-all_32xb2-ssj-scp-90k_coco.py
  76. Metadata:
  77. Training Memory (GB): 7.2
  78. Iterations: 90000
  79. Results:
  80. - Task: Object Detection
  81. Dataset: COCO
  82. Metrics:
  83. box AP: 43.8
  84. - Task: Instance Segmentation
  85. Dataset: COCO
  86. Metrics:
  87. mask AP: 39.2
  88. Weights: https://download.openmmlab.com/mmdetection/v2.0/simple_copy_paste/mask_rcnn_r50_fpn_syncbn-all_rpn-2conv_ssj_scp_32x2_90k_coco/mask_rcnn_r50_fpn_syncbn-all_rpn-2conv_ssj_scp_32x2_90k_coco_20220316_181307-6bc5726f.pth