123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116 |
- Collections:
- - Name: SCNet
- Metadata:
- Training Data: COCO
- Training Techniques:
- - SGD with Momentum
- - Weight Decay
- Training Resources: 8x V100 GPUs
- Architecture:
- - FPN
- - ResNet
- - SCNet
- Paper:
- URL: https://arxiv.org/abs/2012.10150
- Title: 'SCNet: Training Inference Sample Consistency for Instance Segmentation'
- README: configs/scnet/README.md
- Code:
- URL: https://github.com/open-mmlab/mmdetection/blob/v2.9.0/mmdet/models/detectors/scnet.py#L6
- Version: v2.9.0
- Models:
- - Name: scnet_r50_fpn_1x_coco
- In Collection: SCNet
- Config: configs/scnet/scnet_r50_fpn_1x_coco.py
- Metadata:
- Training Memory (GB): 7.0
- inference time (ms/im):
- - value: 161.29
- hardware: V100
- backend: PyTorch
- batch size: 1
- mode: FP32
- resolution: (800, 1333)
- Epochs: 12
- Results:
- - Task: Object Detection
- Dataset: COCO
- Metrics:
- box AP: 43.5
- - Task: Instance Segmentation
- Dataset: COCO
- Metrics:
- mask AP: 39.2
- Weights: https://download.openmmlab.com/mmdetection/v2.0/scnet/scnet_r50_fpn_1x_coco/scnet_r50_fpn_1x_coco-c3f09857.pth
- - Name: scnet_r50_fpn_20e_coco
- In Collection: SCNet
- Config: configs/scnet/scnet_r50_fpn_20e_coco.py
- Metadata:
- Training Memory (GB): 7.0
- inference time (ms/im):
- - value: 161.29
- hardware: V100
- backend: PyTorch
- batch size: 1
- mode: FP32
- resolution: (800, 1333)
- Epochs: 20
- Results:
- - Task: Object Detection
- Dataset: COCO
- Metrics:
- box AP: 44.5
- - Task: Instance Segmentation
- Dataset: COCO
- Metrics:
- mask AP: 40.0
- Weights: https://download.openmmlab.com/mmdetection/v2.0/scnet/scnet_r50_fpn_20e_coco/scnet_r50_fpn_20e_coco-a569f645.pth
- - Name: scnet_r101_fpn_20e_coco
- In Collection: SCNet
- Config: configs/scnet/scnet_r101_fpn_20e_coco.py
- Metadata:
- Training Memory (GB): 8.9
- inference time (ms/im):
- - value: 172.41
- hardware: V100
- backend: PyTorch
- batch size: 1
- mode: FP32
- resolution: (800, 1333)
- Epochs: 20
- Results:
- - Task: Object Detection
- Dataset: COCO
- Metrics:
- box AP: 45.8
- - Task: Instance Segmentation
- Dataset: COCO
- Metrics:
- mask AP: 40.9
- Weights: https://download.openmmlab.com/mmdetection/v2.0/scnet/scnet_r101_fpn_20e_coco/scnet_r101_fpn_20e_coco-294e312c.pth
- - Name: scnet_x101-64x4d_fpn_20e_coco
- In Collection: SCNet
- Config: configs/scnet/scnet_x101-64x4d_fpn_20e_coco.py
- Metadata:
- Training Memory (GB): 13.2
- inference time (ms/im):
- - value: 204.08
- hardware: V100
- backend: PyTorch
- batch size: 1
- mode: FP32
- resolution: (800, 1333)
- Epochs: 20
- Results:
- - Task: Object Detection
- Dataset: COCO
- Metrics:
- box AP: 47.5
- - Task: Instance Segmentation
- Dataset: COCO
- Metrics:
- mask AP: 42.3
- Weights: https://download.openmmlab.com/mmdetection/v2.0/scnet/scnet_x101_64x4d_fpn_20e_coco/scnet_x101_64x4d_fpn_20e_coco-fb09dec9.pth
|