metafile.yml 3.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116
  1. Collections:
  2. - Name: SCNet
  3. Metadata:
  4. Training Data: COCO
  5. Training Techniques:
  6. - SGD with Momentum
  7. - Weight Decay
  8. Training Resources: 8x V100 GPUs
  9. Architecture:
  10. - FPN
  11. - ResNet
  12. - SCNet
  13. Paper:
  14. URL: https://arxiv.org/abs/2012.10150
  15. Title: 'SCNet: Training Inference Sample Consistency for Instance Segmentation'
  16. README: configs/scnet/README.md
  17. Code:
  18. URL: https://github.com/open-mmlab/mmdetection/blob/v2.9.0/mmdet/models/detectors/scnet.py#L6
  19. Version: v2.9.0
  20. Models:
  21. - Name: scnet_r50_fpn_1x_coco
  22. In Collection: SCNet
  23. Config: configs/scnet/scnet_r50_fpn_1x_coco.py
  24. Metadata:
  25. Training Memory (GB): 7.0
  26. inference time (ms/im):
  27. - value: 161.29
  28. hardware: V100
  29. backend: PyTorch
  30. batch size: 1
  31. mode: FP32
  32. resolution: (800, 1333)
  33. Epochs: 12
  34. Results:
  35. - Task: Object Detection
  36. Dataset: COCO
  37. Metrics:
  38. box AP: 43.5
  39. - Task: Instance Segmentation
  40. Dataset: COCO
  41. Metrics:
  42. mask AP: 39.2
  43. Weights: https://download.openmmlab.com/mmdetection/v2.0/scnet/scnet_r50_fpn_1x_coco/scnet_r50_fpn_1x_coco-c3f09857.pth
  44. - Name: scnet_r50_fpn_20e_coco
  45. In Collection: SCNet
  46. Config: configs/scnet/scnet_r50_fpn_20e_coco.py
  47. Metadata:
  48. Training Memory (GB): 7.0
  49. inference time (ms/im):
  50. - value: 161.29
  51. hardware: V100
  52. backend: PyTorch
  53. batch size: 1
  54. mode: FP32
  55. resolution: (800, 1333)
  56. Epochs: 20
  57. Results:
  58. - Task: Object Detection
  59. Dataset: COCO
  60. Metrics:
  61. box AP: 44.5
  62. - Task: Instance Segmentation
  63. Dataset: COCO
  64. Metrics:
  65. mask AP: 40.0
  66. Weights: https://download.openmmlab.com/mmdetection/v2.0/scnet/scnet_r50_fpn_20e_coco/scnet_r50_fpn_20e_coco-a569f645.pth
  67. - Name: scnet_r101_fpn_20e_coco
  68. In Collection: SCNet
  69. Config: configs/scnet/scnet_r101_fpn_20e_coco.py
  70. Metadata:
  71. Training Memory (GB): 8.9
  72. inference time (ms/im):
  73. - value: 172.41
  74. hardware: V100
  75. backend: PyTorch
  76. batch size: 1
  77. mode: FP32
  78. resolution: (800, 1333)
  79. Epochs: 20
  80. Results:
  81. - Task: Object Detection
  82. Dataset: COCO
  83. Metrics:
  84. box AP: 45.8
  85. - Task: Instance Segmentation
  86. Dataset: COCO
  87. Metrics:
  88. mask AP: 40.9
  89. Weights: https://download.openmmlab.com/mmdetection/v2.0/scnet/scnet_r101_fpn_20e_coco/scnet_r101_fpn_20e_coco-294e312c.pth
  90. - Name: scnet_x101-64x4d_fpn_20e_coco
  91. In Collection: SCNet
  92. Config: configs/scnet/scnet_x101-64x4d_fpn_20e_coco.py
  93. Metadata:
  94. Training Memory (GB): 13.2
  95. inference time (ms/im):
  96. - value: 204.08
  97. hardware: V100
  98. backend: PyTorch
  99. batch size: 1
  100. mode: FP32
  101. resolution: (800, 1333)
  102. Epochs: 20
  103. Results:
  104. - Task: Object Detection
  105. Dataset: COCO
  106. Metrics:
  107. box AP: 47.5
  108. - Task: Instance Segmentation
  109. Dataset: COCO
  110. Metrics:
  111. mask AP: 42.3
  112. Weights: https://download.openmmlab.com/mmdetection/v2.0/scnet/scnet_x101_64x4d_fpn_20e_coco/scnet_x101_64x4d_fpn_20e_coco-fb09dec9.pth