123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178 |
- _base_ = [
- '../_base_/default_runtime.py', '../_base_/schedules/schedule_1x.py',
- '../_base_/datasets/coco_detection.py', './rtmdet_tta.py'
- ]
- model = dict(
- type='RTMDet',
- data_preprocessor=dict(
- type='DetDataPreprocessor',
- mean=[103.53, 116.28, 123.675],
- std=[57.375, 57.12, 58.395],
- bgr_to_rgb=False,
- batch_augments=None),
- backbone=dict(
- type='CSPNeXt',
- arch='P5',
- expand_ratio=0.5,
- deepen_factor=1,
- widen_factor=1,
- channel_attention=True,
- norm_cfg=dict(type='SyncBN'),
- act_cfg=dict(type='SiLU', inplace=True)),
- neck=dict(
- type='CSPNeXtPAFPN',
- in_channels=[256, 512, 1024],
- out_channels=256,
- num_csp_blocks=3,
- expand_ratio=0.5,
- norm_cfg=dict(type='SyncBN'),
- act_cfg=dict(type='SiLU', inplace=True)),
- bbox_head=dict(
- type='RTMDetSepBNHead',
- num_classes=80,
- in_channels=256,
- stacked_convs=2,
- feat_channels=256,
- anchor_generator=dict(
- type='MlvlPointGenerator', offset=0, strides=[8, 16, 32]),
- bbox_coder=dict(type='DistancePointBBoxCoder'),
- loss_cls=dict(
- type='QualityFocalLoss',
- use_sigmoid=True,
- beta=2.0,
- loss_weight=1.0),
- loss_bbox=dict(type='GIoULoss', loss_weight=2.0),
- with_objectness=False,
- exp_on_reg=True,
- share_conv=True,
- pred_kernel_size=1,
- norm_cfg=dict(type='SyncBN'),
- act_cfg=dict(type='SiLU', inplace=True)),
- train_cfg=dict(
- assigner=dict(type='DynamicSoftLabelAssigner', topk=13),
- allowed_border=-1,
- pos_weight=-1,
- debug=False),
- test_cfg=dict(
- nms_pre=30000,
- min_bbox_size=0,
- score_thr=0.001,
- nms=dict(type='nms', iou_threshold=0.65),
- max_per_img=300),
- )
- train_pipeline = [
- dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}),
- dict(type='LoadAnnotations', with_bbox=True),
- dict(type='CachedMosaic', img_scale=(640, 640), pad_val=114.0),
- dict(
- type='RandomResize',
- scale=(1280, 1280),
- ratio_range=(0.1, 2.0),
- keep_ratio=True),
- dict(type='RandomCrop', crop_size=(640, 640)),
- dict(type='YOLOXHSVRandomAug'),
- dict(type='RandomFlip', prob=0.5),
- dict(type='Pad', size=(640, 640), pad_val=dict(img=(114, 114, 114))),
- dict(
- type='CachedMixUp',
- img_scale=(640, 640),
- ratio_range=(1.0, 1.0),
- max_cached_images=20,
- pad_val=(114, 114, 114)),
- dict(type='PackDetInputs')
- ]
- train_pipeline_stage2 = [
- dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}),
- dict(type='LoadAnnotations', with_bbox=True),
- dict(
- type='RandomResize',
- scale=(640, 640),
- ratio_range=(0.1, 2.0),
- keep_ratio=True),
- dict(type='RandomCrop', crop_size=(640, 640)),
- dict(type='YOLOXHSVRandomAug'),
- dict(type='RandomFlip', prob=0.5),
- dict(type='Pad', size=(640, 640), pad_val=dict(img=(114, 114, 114))),
- dict(type='PackDetInputs')
- ]
- test_pipeline = [
- dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}),
- dict(type='Resize', scale=(640, 640), keep_ratio=True),
- dict(type='Pad', size=(640, 640), pad_val=dict(img=(114, 114, 114))),
- dict(
- type='PackDetInputs',
- meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
- 'scale_factor'))
- ]
- train_dataloader = dict(
- batch_size=32,
- num_workers=10,
- batch_sampler=None,
- pin_memory=True,
- dataset=dict(pipeline=train_pipeline))
- val_dataloader = dict(
- batch_size=5, num_workers=10, dataset=dict(pipeline=test_pipeline))
- test_dataloader = val_dataloader
- max_epochs = 300
- stage2_num_epochs = 20
- base_lr = 0.004
- interval = 10
- train_cfg = dict(
- max_epochs=max_epochs,
- val_interval=interval,
- dynamic_intervals=[(max_epochs - stage2_num_epochs, 1)])
- val_evaluator = dict(proposal_nums=(100, 1, 10))
- test_evaluator = val_evaluator
- # optimizer
- optim_wrapper = dict(
- _delete_=True,
- type='OptimWrapper',
- optimizer=dict(type='AdamW', lr=base_lr, weight_decay=0.05),
- paramwise_cfg=dict(
- norm_decay_mult=0, bias_decay_mult=0, bypass_duplicate=True))
- # learning rate
- param_scheduler = [
- dict(
- type='LinearLR',
- start_factor=1.0e-5,
- by_epoch=False,
- begin=0,
- end=1000),
- dict(
- # use cosine lr from 150 to 300 epoch
- type='CosineAnnealingLR',
- eta_min=base_lr * 0.05,
- begin=max_epochs // 2,
- end=max_epochs,
- T_max=max_epochs // 2,
- by_epoch=True,
- convert_to_iter_based=True),
- ]
- # hooks
- default_hooks = dict(
- checkpoint=dict(
- interval=interval,
- max_keep_ckpts=3 # only keep latest 3 checkpoints
- ))
- custom_hooks = [
- dict(
- type='EMAHook',
- ema_type='ExpMomentumEMA',
- momentum=0.0002,
- update_buffers=True,
- priority=49),
- dict(
- type='PipelineSwitchHook',
- switch_epoch=max_epochs - stage2_num_epochs,
- switch_pipeline=train_pipeline_stage2)
- ]
|