DJW c16313bb6a 第一次提交 | há 9 meses atrás | |
---|---|---|
.. | ||
README.md | há 9 meses atrás | |
cspnext-l_8xb256-rsb-a1-600e_in1k.py | há 9 meses atrás | |
cspnext-m_8xb256-rsb-a1-600e_in1k.py | há 9 meses atrás | |
cspnext-s_8xb256-rsb-a1-600e_in1k.py | há 9 meses atrás | |
cspnext-tiny_8xb256-rsb-a1-600e_in1k.py | há 9 meses atrás | |
cspnext-x_8xb256-rsb-a1-600e_in1k.py | há 9 meses atrás |
In this folder, we provide the imagenet pre-training config of RTMDet's backbone CSPNeXt.
To train with these configs, please install MMClassification 1.x first.
Install by MIM:
mim install mmcls>=1.0.0rc0
or install by pip:
pip install mmcls>=1.0.0rc0
To pre-train on ImageNet, you need to prepare the dataset first. Please refer to the guide.
You can use the classification config in the same way as the detection config.
For single-GPU training, run:
python tools/train.py \
${CONFIG_FILE} \
[optional arguments]
For multi-GPU training, run:
bash ./tools/dist_train.sh \
${CONFIG_FILE} \
${GPU_NUM} \
[optional arguments]
More details can be found in user guides.
Model | resolution | Params(M) | Flops(G) | Top-1 (%) | Top-5 (%) | Download |
---|---|---|---|---|---|---|
CSPNeXt-tiny | 224x224 | 2.73 | 0.34 | 69.44 | 89.45 | model |
CSPNeXt-s | 224x224 | 4.89 | 0.66 | 74.41 | 92.23 | model |
CSPNeXt-m | 224x224 | 13.05 | 1.93 | 79.27 | 94.79 | model |
CSPNeXt-l | 224x224 | 27.16 | 4.19 | 81.30 | 95.62 | model |
CSPNeXt-x | 224x224 | 48.85 | 7.76 | 82.10 | 95.69 | model |