metafile.yml 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312
  1. Collections:
  2. - Name: RetinaNet
  3. Metadata:
  4. Training Data: COCO
  5. Training Techniques:
  6. - SGD with Momentum
  7. - Weight Decay
  8. Training Resources: 8x V100 GPUs
  9. Architecture:
  10. - Focal Loss
  11. - FPN
  12. - ResNet
  13. Paper:
  14. URL: https://arxiv.org/abs/1708.02002
  15. Title: "Focal Loss for Dense Object Detection"
  16. README: configs/retinanet/README.md
  17. Code:
  18. URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/detectors/retinanet.py#L6
  19. Version: v2.0.0
  20. Models:
  21. - Name: retinanet_r18_fpn_1x_coco
  22. In Collection: RetinaNet
  23. Config: configs/retinanet/retinanet_r18_fpn_1x_coco.py
  24. Metadata:
  25. Training Memory (GB): 1.7
  26. Training Resources: 8x V100 GPUs
  27. Epochs: 12
  28. Results:
  29. - Task: Object Detection
  30. Dataset: COCO
  31. Metrics:
  32. box AP: 31.7
  33. Weights: https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r18_fpn_1x_coco/retinanet_r18_fpn_1x_coco_20220407_171055-614fd399.pth
  34. - Name: retinanet_r18_fpn_1xb8-1x_coco
  35. In Collection: RetinaNet
  36. Config: configs/retinanet/retinanet_r18_fpn_1xb8-1x_coco.py
  37. Metadata:
  38. Training Memory (GB): 5.0
  39. Training Resources: 1x V100 GPUs
  40. Epochs: 12
  41. Results:
  42. - Task: Object Detection
  43. Dataset: COCO
  44. Metrics:
  45. box AP: 31.7
  46. Weights: https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r18_fpn_1x8_1x_coco/retinanet_r18_fpn_1x8_1x_coco_20220407_171255-4ea310d7.pth
  47. - Name: retinanet_r50-caffe_fpn_1x_coco
  48. In Collection: RetinaNet
  49. Config: configs/retinanet/retinanet_r50-caffe_fpn_1x_coco.py
  50. Metadata:
  51. Training Memory (GB): 3.5
  52. inference time (ms/im):
  53. - value: 53.76
  54. hardware: V100
  55. backend: PyTorch
  56. batch size: 1
  57. mode: FP32
  58. resolution: (800, 1333)
  59. Epochs: 12
  60. Results:
  61. - Task: Object Detection
  62. Dataset: COCO
  63. Metrics:
  64. box AP: 36.3
  65. Weights: https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r50_caffe_fpn_1x_coco/retinanet_r50_caffe_fpn_1x_coco_20200531-f11027c5.pth
  66. - Name: retinanet_r50_fpn_1x_coco
  67. In Collection: RetinaNet
  68. Config: configs/retinanet/retinanet_r50_fpn_1x_coco.py
  69. Metadata:
  70. Training Memory (GB): 3.8
  71. inference time (ms/im):
  72. - value: 52.63
  73. hardware: V100
  74. backend: PyTorch
  75. batch size: 1
  76. mode: FP32
  77. resolution: (800, 1333)
  78. Epochs: 12
  79. Results:
  80. - Task: Object Detection
  81. Dataset: COCO
  82. Metrics:
  83. box AP: 36.5
  84. Weights: https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r50_fpn_1x_coco/retinanet_r50_fpn_1x_coco_20200130-c2398f9e.pth
  85. - Name: retinanet_r50_fpn_amp-1x_coco
  86. In Collection: RetinaNet
  87. Config: configs/retinanet/retinanet_r50_fpn_amp-1x_coco.py
  88. Metadata:
  89. Training Memory (GB): 2.8
  90. Training Techniques:
  91. - SGD with Momentum
  92. - Weight Decay
  93. - Mixed Precision Training
  94. inference time (ms/im):
  95. - value: 31.65
  96. hardware: V100
  97. backend: PyTorch
  98. batch size: 1
  99. mode: FP16
  100. resolution: (800, 1333)
  101. Epochs: 12
  102. Results:
  103. - Task: Object Detection
  104. Dataset: COCO
  105. Metrics:
  106. box AP: 36.4
  107. Weights: https://download.openmmlab.com/mmdetection/v2.0/fp16/retinanet_r50_fpn_fp16_1x_coco/retinanet_r50_fpn_fp16_1x_coco_20200702-0dbfb212.pth
  108. - Name: retinanet_r50_fpn_2x_coco
  109. In Collection: RetinaNet
  110. Config: configs/retinanet/retinanet_r50_fpn_2x_coco.py
  111. Metadata:
  112. Epochs: 24
  113. Results:
  114. - Task: Object Detection
  115. Dataset: COCO
  116. Metrics:
  117. box AP: 37.4
  118. Weights: https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r50_fpn_2x_coco/retinanet_r50_fpn_2x_coco_20200131-fdb43119.pth
  119. - Name: retinanet_r50_fpn_ms-640-800-3x_coco
  120. In Collection: RetinaNet
  121. Config: configs/retinanet/retinanet_r50_fpn_ms-640-800-3x_coco.py
  122. Metadata:
  123. Epochs: 36
  124. Results:
  125. - Task: Object Detection
  126. Dataset: COCO
  127. Metrics:
  128. box AP: 39.5
  129. Weights: https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r50_fpn_mstrain_3x_coco/retinanet_r50_fpn_mstrain_3x_coco_20210718_220633-88476508.pth
  130. - Name: retinanet_r101-caffe_fpn_1x_coco
  131. In Collection: RetinaNet
  132. Config: configs/retinanet/retinanet_r101-caffe_fpn_1x_coco.py
  133. Metadata:
  134. Training Memory (GB): 5.5
  135. inference time (ms/im):
  136. - value: 68.03
  137. hardware: V100
  138. backend: PyTorch
  139. batch size: 1
  140. mode: FP32
  141. resolution: (800, 1333)
  142. Epochs: 12
  143. Results:
  144. - Task: Object Detection
  145. Dataset: COCO
  146. Metrics:
  147. box AP: 38.5
  148. Weights: https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r101_caffe_fpn_1x_coco/retinanet_r101_caffe_fpn_1x_coco_20200531-b428fa0f.pth
  149. - Name: retinanet_r101-caffe_fpn_ms-3x_coco
  150. In Collection: RetinaNet
  151. Config: configs/retinanet/retinanet_r101-caffe_fpn_ms-3x_coco.py
  152. Metadata:
  153. Epochs: 36
  154. Results:
  155. - Task: Object Detection
  156. Dataset: COCO
  157. Metrics:
  158. box AP: 40.7
  159. Weights: https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r101_caffe_fpn_mstrain_3x_coco/retinanet_r101_caffe_fpn_mstrain_3x_coco_20210721_063439-88a8a944.pth
  160. - Name: retinanet_r101_fpn_1x_coco
  161. In Collection: RetinaNet
  162. Config: configs/retinanet/retinanet_r101_fpn_1x_coco.py
  163. Metadata:
  164. Training Memory (GB): 5.7
  165. inference time (ms/im):
  166. - value: 66.67
  167. hardware: V100
  168. backend: PyTorch
  169. batch size: 1
  170. mode: FP32
  171. resolution: (800, 1333)
  172. Epochs: 12
  173. Results:
  174. - Task: Object Detection
  175. Dataset: COCO
  176. Metrics:
  177. box AP: 38.5
  178. Weights: https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r101_fpn_1x_coco/retinanet_r101_fpn_1x_coco_20200130-7a93545f.pth
  179. - Name: retinanet_r101_fpn_2x_coco
  180. In Collection: RetinaNet
  181. Config: configs/retinanet/retinanet_r101_fpn_2x_coco.py
  182. Metadata:
  183. Training Memory (GB): 5.7
  184. inference time (ms/im):
  185. - value: 66.67
  186. hardware: V100
  187. backend: PyTorch
  188. batch size: 1
  189. mode: FP32
  190. resolution: (800, 1333)
  191. Epochs: 24
  192. Results:
  193. - Task: Object Detection
  194. Dataset: COCO
  195. Metrics:
  196. box AP: 38.9
  197. Weights: https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r101_fpn_2x_coco/retinanet_r101_fpn_2x_coco_20200131-5560aee8.pth
  198. - Name: retinanet_r101_fpn_ms-640-800-3x_coco
  199. In Collection: RetinaNet
  200. Config: configs/retinanet/retinanet_r101_fpn_ms-640-800-3x_coco.py
  201. Metadata:
  202. Epochs: 36
  203. Results:
  204. - Task: Object Detection
  205. Dataset: COCO
  206. Metrics:
  207. box AP: 41
  208. Weights: https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_r101_fpn_mstrain_3x_coco/retinanet_r101_fpn_mstrain_3x_coco_20210720_214650-7ee888e0.pth
  209. - Name: retinanet_x101-32x4d_fpn_1x_coco
  210. In Collection: RetinaNet
  211. Config: configs/retinanet/retinanet_x101-32x4d_fpn_1x_coco.py
  212. Metadata:
  213. Training Memory (GB): 7.0
  214. inference time (ms/im):
  215. - value: 82.64
  216. hardware: V100
  217. backend: PyTorch
  218. batch size: 1
  219. mode: FP32
  220. resolution: (800, 1333)
  221. Epochs: 12
  222. Results:
  223. - Task: Object Detection
  224. Dataset: COCO
  225. Metrics:
  226. box AP: 39.9
  227. Weights: https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_x101_32x4d_fpn_1x_coco/retinanet_x101_32x4d_fpn_1x_coco_20200130-5c8b7ec4.pth
  228. - Name: retinanet_x101-32x4d_fpn_2x_coco
  229. In Collection: RetinaNet
  230. Config: configs/retinanet/retinanet_x101-32x4d_fpn_2x_coco.py
  231. Metadata:
  232. Training Memory (GB): 7.0
  233. inference time (ms/im):
  234. - value: 82.64
  235. hardware: V100
  236. backend: PyTorch
  237. batch size: 1
  238. mode: FP32
  239. resolution: (800, 1333)
  240. Epochs: 24
  241. Results:
  242. - Task: Object Detection
  243. Dataset: COCO
  244. Metrics:
  245. box AP: 40.1
  246. Weights: https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_x101_32x4d_fpn_2x_coco/retinanet_x101_32x4d_fpn_2x_coco_20200131-237fc5e1.pth
  247. - Name: retinanet_x101-64x4d_fpn_1x_coco
  248. In Collection: RetinaNet
  249. Config: configs/retinanet/retinanet_x101-64x4d_fpn_1x_coco.py
  250. Metadata:
  251. Training Memory (GB): 10.0
  252. inference time (ms/im):
  253. - value: 114.94
  254. hardware: V100
  255. backend: PyTorch
  256. batch size: 1
  257. mode: FP32
  258. resolution: (800, 1333)
  259. Epochs: 12
  260. Results:
  261. - Task: Object Detection
  262. Dataset: COCO
  263. Metrics:
  264. box AP: 41.0
  265. Weights: https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_x101_64x4d_fpn_1x_coco/retinanet_x101_64x4d_fpn_1x_coco_20200130-366f5af1.pth
  266. - Name: retinanet_x101-64x4d_fpn_2x_coco
  267. In Collection: RetinaNet
  268. Config: configs/retinanet/retinanet_x101-64x4d_fpn_2x_coco.py
  269. Metadata:
  270. Training Memory (GB): 10.0
  271. inference time (ms/im):
  272. - value: 114.94
  273. hardware: V100
  274. backend: PyTorch
  275. batch size: 1
  276. mode: FP32
  277. resolution: (800, 1333)
  278. Epochs: 24
  279. Results:
  280. - Task: Object Detection
  281. Dataset: COCO
  282. Metrics:
  283. box AP: 40.8
  284. Weights: https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_x101_64x4d_fpn_2x_coco/retinanet_x101_64x4d_fpn_2x_coco_20200131-bca068ab.pth
  285. - Name: retinanet_x101-64x4d_fpn_ms-640-800-3x_coco
  286. In Collection: RetinaNet
  287. Config: configs/retinanet/retinanet_x101-64x4d_fpn_ms-640-800-3x_coco.py
  288. Metadata:
  289. Epochs: 36
  290. Results:
  291. - Task: Object Detection
  292. Dataset: COCO
  293. Metrics:
  294. box AP: 41.6
  295. Weights: https://download.openmmlab.com/mmdetection/v2.0/retinanet/retinanet_x101_64x4d_fpn_mstrain_3x_coco/retinanet_x101_64x4d_fpn_mstrain_3x_coco_20210719_051838-022c2187.pth